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3. Groups
3.0. Introduction

Modern Algebra is largely concerned with the study of abstract sets endowed with one or
more binary operations. In this chapter we introduce one of the basic algebraic structures
known as groups. A group is a set with one binary operation defined on it satisfying some
natural conditions. The definition of a group is an abstraction of the familiar properties of

(Z,+) given below.

(i) Addition is an associative binary operation in Z.
(i1)) The element 0 € Z is such thata + 0 = 0 + a = a for all a € Zm. Hence (0) is the
identity element w.r.t. addition.
(iii) Let a € Z. The element —a € Z is such thata + (—a) = (—a) + a = 0. Hence —a is

the inverse of a.
We isolate these properties in the following definition.
3.1. Definition and Examples

Definition. A non-empty set G together with a binary operation *: G X G — G is called a

group if the following conditions are satisfied.

(1) = is associative (i.e.)a* (bxc) = (a*b)*cforalla,b,c €G.

(i1)) There exists an element e € G such thata x e = e xa = a for all a € G.¢ is called the
identity element of G.

(iii) For any element a in G there exists an element @’ in Gsuch thata *a' = a' xa =

e. a’ is called the inverse of a.
Examples

1. Z,Q,R and C are groups under usual addition.
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2. The set of all 2><2matrices(i b) where a,b,c,d € R is a group under matrix addition.

d
—b

(O 0) is the identity element and (:Ccl _d

0 0 )is the inverse of (Ccl b).

d

3. The set of all 2 X 2 non-singular matrices (Ccl Z) where a, b,c,d € Ris a group
under matrix multiplication.

0) is the identity element.The

We know that matrix multiplication is associative.((l) 1

inverse of (Ccl Z) is ﬁ(_dc _ab) where |A| = ad — bc # 0.
4. N is not a group under usual addition since there is no element e € N such that
a+e=a.
5. The set E of all even integers under usual addition is a group.
Fora,b € E = a + b € E. Therefore usual addition is a binary operation in E.

0 € E is the identity element. If a € E, —a € Eis the inverse of a.
6. Q" and R*under usual multiplication are groups.
1 is the identity element and the inverse of a is 1/a.
7. Q7 is not a group under usual multiplication.
Fora,b € Q" = ab € Q*. Therefore usual multiplication is a binary operation in Q*.1 €
Q™ is theidentity element. If a € Q*,(1/a) € Q* is the inverse of a.
8. Z under the usual multiplication is not a group. 1 € Z is the identity element.
However, any element other than 1 and -1 does not have an inverse.
9. Let A be any non-empty set. Let B(A) be the set of all bijections from A to itself.
B(A) is a group under the composition of functions.
We know that f,g € B(A) = f o g € B(A4)
The composition of functions is associative. ig: A — A is the identity element. If
f:A - Ais abijection, then f~1: A > Aisalso a

bijectionand (fof 1= f"lof =1i,).
10. Let G = {e} and e * e = e. Obviously (G) is a group.
11. Let G = {1, —1}. G is a group under usual multiplication. 1 is the identity element.

The inverse of each element is itself. The Cayley table for this group is

Manonmaniam Sundaranar Universiy, Directorate & Continuing Education, Tirunelveli 5



-1 -1 1

12. (P(S),A) is a group. A is associative. Also AAD =DA A=A for all Ae P(S). Hence @ is
the identity element. AA A=® so that inverse of each element is itself.

Example 15
C* is a group under usual multiplication given by ((a+ib)(c+id))=(ac-bd)+i(ad+bc)
Proof. Let x,y € C*. Then x = a + ib where a and b are not simultanecously zero and
y = ¢ + id where ¢ and d are not simultaneously zero.
Now, xy = (a + ib)(c + id) = (ac — bd) + i(ad + bc)
To prove that ac - bd = 0 and ad+bc = 0 are not simultaneously zero.
Suppose,

ac—bd=0....... (1)

ad +bc=0....... (2)
Multiplying (1) by (bd) and (2) by (c) and subtracting, we geth(d? + c?) = 0.
Either b = 0 ord? + c? = 0.

Either b = 00or c = 0 and d = 0. Similarly, eithera = 0 or (¢ = 0 and d = 0).

Thus a=0 and b=0 or (¢c=0 and d=0)

= x=0 or y=0 which is a contradiction.
Hence xy € C*.

Now, letx =a+ib,y=c+id,z=-e+if.

Then x(yz) = (a + ib)[(ce — df) + i(de + ¢f)] = (ace — adf — bde + bcf) +
i(bce — bdf + ade + acf)

Similarly (xy)z = (ace — adf — dbe — bcf) + i(bce — bdf + ade + acf)

Hence x(yz) = (xy)z.
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1+i0 is the identity element.

Also
1 1 a—ib

x=a+ib=az+b2

Since a® 4+ b? # 0,1/x € C * and is the inverse of x. Hence C is a group under usual
multiplication.

Example. 16

Let G={z: ze C and |z]=1}. Then G is a group under multiplication.

Proof. Let 7,7, € G. Then |z;|=| z|=1.

. |2122| = |z4] |z2] = 1 and hence z,z; € G.

We know that usual multiplication of complex numbers is associative.

Also 1 =1 +10 € G and is the identity element.

Now, let z € G. Then |z| = 1. Hence |1/z| = 1/|z| = 1.

~ 1/z € G and is the inverse of z. Hence G is a group.

Example.17 The set of all nt* roots of unity with usual multiplication is a group.
Proof. Let w = cos(2m/n) + 1 sin(2n/n). Then the n™ roots of unity are given by

1, w, w? ..., wo L,

LetG={l,w, W% ..., w2 '},

We know that w® = 1, w™*! = w etc.

Letw,wse€G. Letr +s=qgn+t where 0 <t<n.

Swwt = wt = witt = (wMIwt = w' e G.

We know that usual multiplication of complex numbers is associative.

1 € G is the identity element.

Inverse of w' is w™*~". Hence G is a group.
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Example 18. Let G={a+b\2 :a,be Z}. Then G is a group under usual addition.
Proof. Let a + bV2 and ¢ + dV2 € G.
Then (a + bV2) + (c +dV2) = (a+¢) + (b + d)V2 € G.
We know that usual addition is associative.
0 = 0+ 0V2 € G is the identity element. —a — bV/2 is the inverse of a +bv/2.
Hence G is a group.
Example 19. Let G be the set of all real numbers except —1. Define * on Gbya*b=a+
b + ab. Then (G, *) is a group.
Proof. Leta,b € G. Thena#—1 and b#—1. We claim thata * b #—1.
Supposea *x b=—1. Thena+b+ab=-1sothata+b+ab+1=0.
i.e., (a+ 1)(b+ 1) =0 so that either a =—1 or b =—1 which is a contradiction.
Hence a * b #—1 and thus * is a binary operation on G.
To prove * is associative
a*x(bxc)=ax(b+c+hbc)

=a+(b+c+bc)+a(b+c+bc)

=a+b+c+bc+ab+ac+abc.
Also(a*b)*xc=(a+tb+ab)*c

=a+b+ab+c+(at+b+ab)c
=a+b+c+ab+ac+bc+abc.

Hencea* (bxc)=(a*b)*c.
0 is the identity, fora*0=a+0+a0=aand0xa=0+a+ 0a=a.
Now, let a' be such thata * a' = 0. Hence a + a' + aa' = 0 so that a' = —a/(1+a).
Since a #—1, we have a' € R — {—1}.
Also a' * a=(—a/(1 + a)) * a= —a/(1+a) + a + (—a%(1+a))= 0.

Hence a' is the inverse of a. Thus G is a group.
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Example 20. In R* we define a * b= (1/2)ab. Then (R*, ) is a group.

Proof. Obviously * is a binary operation in R*.

Leta,b,c € R *.

Then (a * b) xc = [(1/2)ab] * ¢ = (1/4)abc =a * (b * ¢). Hence * is associative.
Lete € R * be such thata * e = a.

~ (1/2)ae = a and hence e = 2.

~2%a=ax*2 = a.Hence 2 is the identity.

Leta € R*.Letb € R * be such thata * b = 2. Then (1/2)ab = 2,i.e. b = 4/a.
~ax*(4/a) =1/2(a)(4/a) = 2 i.e., (4/a) is the inverse of a. Thus (R*, ) is a group.
Example 21.

Let f, : R — R be the function defined by f.(x) = x + a. Then G = {f,/a € R} is a group
under composition of functions.

Proof. Let £, f;, € G.

Then (fao fp)(x) = (fa(fy(x)) = fa(x + b) =x + b + a = fyia ().

Hence fa©o fy = fp1a € G.

We know that composition of mappings is associative.

Also fye fo = faro = fa = fo © fa. Hence f is the identity.

Also fao f_qg =fo=f_s° fa Hence f_, is the inverse of f..

Hence G is a group.

Definition. Let Z,= {0, 1,2, ..., n — 1}.

Leta,b€Z, Leta+b=qgqn+r where 0 <r <n.

We definea @ b =r.Letab = g'n + s where 0 <s <n. We definea O b = s.

The binary operations @ and © are called addition modulo n and multiplication modulo
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n respectively.
Example 22. (Z,, @) is a group.
Proof. Clearly @ is a binary operation in Z,.
Leta,b,c€Z, Leta+b=qmnm+rywhere0<r; <n...(1)
b+c=qgm+r,where0<r,<n...(Q2)
rpnte=qsnt+trzwhere 0 <rz;<n...(3)
~a+b+c=(q1+ qz)n+ 13 (using 1 and 3)
~a+qgmn+ry=(q1+qs)n+rsz(by2)

a+ry=qm+r; whereqa=q1+q>2—q3 ... (4)
Now (a@b)Pc=r1Pc=r3(by3)
Alsoa @ (b P c) =a @ r, =r;(by4). Hence @ is associative.
Clearly the identity element is 0 and the inverse of a € Z,, isn — a.
Hence (Z,,,®) is a group.
Note 1. (Z,, @) is called the group of integers modulo n.
Note 2. This example shows that for any positive integer n there exists a group with n
elements.
Example 23. Let n be a prime. Then Zn — {0} is a group under multiplication modulo n.
Proof. Leta,b € Z, — {0}. Thena# 0 and b #0.
Now by definitiona O b € Z;
We claim thata © b # 0.
Suppose a O b = 0. Then n|ab. Since n is prime n|a or n|b.
~ a = 0 or b = 0 which is a contradiction. Hence a © b € Z,, — {0}.

Now, leta,b,c € Z,, —{0}.
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Let ab=qgmn+rywhere0<r;<n...(1)
bc=qgmn+r,where0<r, <n...(2)

ric=qsn+rywhere0 <rs<n...(3)

~abc = qnc + ryc (by 1)
= a(gzn +r2) = qin + qzn + r3 (using 2 and 3)

ar, = qun + r3 where q4 = q1¢ + q3—-aq; ... (4)
Now (aOb)Oc=r1Oc=r3(by3)
Alsoa O (bOc)=a@Or,=r;3(by4)
@@Ob)Oc=aO®BOC)
Hence © is associative.
1 € Z, — {0} is the identity element.
Leta € Z,, — {0}.
Since n is prime (a,n) = 1. Hence the linear congruence ax = 1(modn) has a unique
Solution, say b € Z, — {0}. Clearly a © b = b © a = 1. Thus b is the inverse of a.
Hence Z,, — {0} is a group.
Note. The above result is not true if n is a composite number.
For, if n is a composite number, let n = pq where 1 <p <nand1 < q < n.
Clearlyp,q € Z,, —{0}. Butp © g = 0.
Hence Z,, — {0} is not closed under (©. Hence it is not a group.
Example 24. The set of all positive integers less than n and prime to it is a group under
Multiplication modulo n.
Proof. Let G = {m/m < nand (m,n) = 1}.
Letp,q € G. Obviously pq < nand (pq,n) = 1. Nowletpg =sn+1r,0<r <n.

Since p © g = r (by definition).
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We claim that (r,n) = 1.

Suppose (r,n) = a > 1, then a|r and ajn. Hence a|r + sn i.e., a|pq. Also ajn.

Hence (pgq,n) # 1, which is a contradiction. Hence r € G. Hence G is closed under ©.
We know that multiplication modulo n is associative. 1 € G is the identity element.
Leta € G. Then (a,n) = 1. Hence the linear congruence ax = 1(modn) has a unique
solution for x, say b.

ab = 1(modn),ab = gn + 1.

Nowc|bandc|n = c|(ab —qn) = c|1 = c = 1.

Thus (b,n) = 1. Hence b € G and is the inverse of a. Thus G is a group.

Example 27. In N we define a * b = a. Then (N, *) is not a group.

Proof. Clearly * is an associative binary operation on N.

However, there is no element e € N such that e * a = a for all a € N. Hence there is no
dentity element in (N,*). Hence (N,*) is not a group.

Definition. A group G is said to be abelian if ab = ba for all a,b € G. A group which is

not abelian is called a non-abelian group.

Examples

1. Z,Q, R and C under usual addition are abelian groups.
2. (P(S), A) is an abelian group since AAB = B A A forall A, B € P(S).
3. Let B(R) denote the set of all bijections from R to R. Then B(R) is a group under the
composition of functions. This group is non-abelian. For, consider
f: R — R given by f(x) =x + 3 and
g : R — R given by g(x) = 2x. Clearly f and g are bijections.
(fog)x) =f(gx) = f(2x) = 2x + 3 and
(@oNHX=g(f(x) =g(x+3)=2x+6.
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Hence fog #gof.
Hence B(R) is non-abelian.

4. (Z,€D) is an abelian group.
Exercises

1. Determine which of the groups given in 3.1 are abelian.

2. Let5Z = 5x/x € Z. Show 5Z is an abelian group under usual addition.

3. Letnbe a fixed integer. Let nZ = {nx /x € Z}. Show that nZ is an abelian group
under usual addition.

4. Let G = {2"/n € Z}. Show that G is an abelian group under usual multiplication.

3.2. Elementary Properties of Group

Theorem 3.1. Let G be a group. Then
(1) identity element of G is unique.

(i1) for any a € G, the inverse of a is unique.

Proof.(i) Let e and e’ be two identity elements of G. Then
ee' = e (since e’ is an identity).
Also ee’ = e (since e'is an identity).

Hencee = e'.

(ii) Let @’ and a’’ be two inverses of a.
Hence aa' =a'a=eand aad’ =d'a=ce.
~a'=d'e=d"(aad") = (a"a)a' =ead =d'.

Hence inverse is unique.

Note. We denote the inverse of a by a™ 1.

Theorem 3.2. In a group the left and right cancellation laws hold
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(i.e)ab=ac=>b=candba=ca=>b=c.

Proof. ab = ac = a~'(ab) = a *(ac)

= (ata)b=(a'a)c=>eb=ec=>b =c.
Similarly we can prove that ba = ca = b = c.

Theorem 3.3. Let G be a group and a,b € G. Then the equations ax = band ya = b

have unique solutions for x and y in G.

Proof.Consider a™'b € G.Then a(a™'b) = (aa™')b = eb = b.

Hence x = a~!b is a solution of ax = b.Now, to prove the uniqueness, let x; and x, be
two solutions of ax = b. Then ax; = b and ax, = b.

.~ ax; = ax, which implies x; = x,.= x = a~1b is the unique solution for ax =

b.Similarly we can prove that y = ba™! is the unique solution of the equation ya = b.

Theorem 3.4. Let G be a group. Let a, b € G. Then (ab)™* = b~ *a ! and (a )" = a.

Proof. (ab)(b™ta™) = a(bb™Ha ' =aea™ ! =aa™ ! =e.

Similarly (b~*a"1)(ab) = e.

Hence (ab)™! = b 1a 1.
Proof of the second part is obvious.
Corollary. If a;,a,, ...,a, € G then (aa, - a,)" ! = azta;l, - ajl.

Definition. Let G be a group and a € G. For any positive integer n we define a™ =

a.a....a (a written n times)
Clearly (a®) ' =(a.a..a) ' =(ata t...a™)) = (a})"

We now define a™™ = (a™)" = (a™)?!

Finally we define a® = e. Thus a™is defined for all integer n.
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Note. When the binary operation on G is “+”, we denote a + a + --- + a (written n times)

as na.

Theorem 3.5.

(i) a™a™ = a™™, m,n € Z.

(i) (@™)™ = a™, m,n € Z.

Note. In additive notation the above results take the form

ma +na = (m+n)a and

n(ma) = (mn)a.

Proof. (i) When n=0 the result follows directly from the definition. Now let n>0. We prove
by induction on n.

Whenm > 0,a™*! = a™a! (by definition).

Whenm = —1,a™*' =a’ =eanda™a' = a la =e.

Hence a™*! = a™al.

Whenm < =2 letm = —p,p = 2.

a™a = (aP)a = (aHPa = (aHYP la ta = a7 P*! = g™t

Hence a™*! = a™a forallm € Z.

Hence the result is true for n=1. Suppose now that the theorem is valid for n=k>1.
Then a™a* = a™*k,

m_ k+1 m+k

s~ a™ak*tt = g™ (aka) = (@™a¥)a =a

= a™***1(py definition).

a(hypothesis)

Thus it follows that the theorem is valid for n=k+1. Hence by induction the theorem holds
for all positive integers n.
Finally if n<0, we can prove the result by induction on -n.

Proof of (ii) is left to the reader.
Solved Problems
Problem 1. Show that in a group G, x? = x if and only if x = e.

Solution. Clearly e? = ee = e. Conversely, let x = x.

Then x x = x e. Hence by cancellation law x =e.
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Note. An element a € G is called idempotent if a> = a. Thus we have shown thatin a

group G, the identity element is the only idempotent element.

Problem 2. In an abelian group (ab)? = a?b?.
Solution. (ab)? = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a’b?.
nbn

Note. In general for any positive integer n, (ab)" = a (prove by using induction).

Problem 3. Let G be a group such that a? = e forall a € G. Then G is abelian.
Solution. a? =e=>aa=e=>a=a "
Now, ab = (ab)™* = b~ ta™! = ba.

Hence G is abelian.

Problem 4. Let G be a group in which (ab)™ = a™b™ for three consecutive integers and
forall a,b € G. Then G is abelian.
Solution. Leta, b € G.
Let (ab)™ = a™b™; (ab)™*! = a™*1p™*1 and (ab)™*? = q™*2p™m+2,
Now, (ab)™*! = q™*1p™+1 = (ab)™(ab) = (a™a)(bb™)
= (@™b™)(ab) = (a™a)(bb™)
= b™a = ab™(by cancellation law) ...(1)
Similarly (ab)™*? = qM+2p™m*+2 = pmtlg = gp™+1
= b™ba = ab™b
= b™ba = b™ab(by(1))
= ba = ab(by cancellation law)

Thus G is abelian.

Problem 5. Let (H,+) and (K,*) be groups. We define a binary operation o on (H X K) by
(hy,k1)a(hy, ky) = (hihy, ky * k). Then H X K is a group.

Note.H X K is called the direct product of H and K.

Solution. First we shall prove that o is associative.

Let (hll kl)' (hz, kz), (h3, k3) € HXK.
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(hy, k1)o(hy, kz)]o(hs, k) = (haha, kg * kp)o(hs, k3)
= ((hyhp)hs, (ky * k3) * ks)
= (hy(hzh3), ky * (k2 * k3))
= (hq, k1)o((hy, k2)o(hs, k3))
Hence O is associative.
Let (e, e1) be the identities of the groups H and K respectively. Clearly (e, e1) is the
identity element in H X K.
Also (h™1,k™1) is the inverse of (h, k).

Hence H X K is a group.
Exercises

1. Prove that if (H) and (K) are abelian groups, then (H X K) is also an abelian group.

2. Showthatinagroupa !=b"1=a=hb.

3.4. Permutation Groups
In example 9 of 3.1 we have seen that the set of all bijections B(A) from A to itself is a
group under the composition of functions. In this section we make a detailed study of this

group when A is finite.
Definition. Let A be a finite set. A bijection from A to itself is called a permutation of A.

For example, if A= {1,2,3,4} f:A —A given by f(1)=2, f(2) = 1,f(3) =4 and f(4)=3 is a

1234)_

permutation of A. We shall write this permutation as (2 | 4 3

An element in the bottom row is the image of the element just above it in upper row.

Note.(l 2 3 4)=(4 31 2)

2 1 4 3 34 2 1

Hence any rearrangement of columns in a permutation is immaterial.

Definition. Let A be a finite set containing elements. The set of all permutations of A is
clearly a group under the composition of functions. This group is called the symmetric

group of degree n and is denoted by S,,.
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e=(1 5 Je=0 5 )
(2 Yin=( 2 )
(2 Yipe= (1 2 )

1 2 3
P l l l 1 2 3
2 3 1 Hence p;p;: \) l
pa: l l l
1 2 3
so that pip,=e
(1 2 31 2 3\_ /1 2 3\ _ ..
Now, p1ps = (2 3 1) (3 ) 1) = (2 1 3) = ps. Similarly we can compute all the

other products and the Cayley table for this group is given by

e b1 b2 p3 P4 ps
e e b1 %) b3 2 Ds
P1 P1 %) e P4 Ds b3
b2 b2 e P1 Ps ps3 P4
b3 b3 Ds 2 e b2 D1
P4 P4 b3 Ds P1 e %)
ps ps 12 ps3 b2 P1 e

Thus S is a group containing 3! = 6 elements:

Remarks.

1. In section 2.4 we have defined the composition fg of two functions f and g by

(g ° HH(x) = glf ()]

Hence to find the image of any element x under g o f, we first apply f and then g.
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However in forming the product of two permutations p; and p, we adopt a different
convention. To find the image of x under the product p,p,, we first apply p; and then p,.
2. In S3,p1p2 = pop1 = e so that the inverse of p; is p,. In general the inverse of a

permutation can be obtained by interchanging the rows of the permutation.

For example, if p = (; i g g i) then the inverse of p is the permutation given by
1_(3 4 2 5 1_(1 2 3 4 5
_(12345)_(53124)

3. InS;3,p1ps = ps and p,p; = p3. Hence p;p, # pup; so that S5 is non-abelian.

4. The symmetric group S,, contains ! elements, for, let A = (1,2, ...,n). Any
permutation on A4 is given by specifying the image of each element. The image of 1 can be
chosen in n different ways. Since the image of two is different from the image of 1, it can
be chosen in (n — 1) different ways and so on.

Hence the number of permutations of A is n(n — 1) ...... 2.1 = n! so that the number of

elements in S, is n!.

Definition. Let G be a finite group. Then the number of elements in G is called the order

of G and is denoted by |G| or © (G).

Exercises

1. Compute af, fa and a~t if

@Wa=( 3 3 3:6=(G 573
Oa=( 374 DB=G3335o
@e=( 233 e Ne=0G 23539

Q=
w N
Sow
vl
= U1
N——

Consider the permutation (
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In this permutation 1 - 2 - 3 - 4 - 5 — 1. Thus the permutation maps the symbols in a

1 2 3 4 5
1 3 4 5 2

symbol 1 and maps the remaining symbols in a cyclic order.

cyclic order. Now consider the permutation ( ) This permutation fixes the

Definition. Let p be a permutation on A = {1,2, ..., n}. p is called a cycle of length r if
there exist distinct symbols a4, a, ... ... , @, such that

p(a1) = az,p(az) = as, ..., p(ar-1) = ar, and p(a,) = a,, and p(b) = b, for all
beA—-{aya,.., a}.

This cycle is represented by the symbol (a4, a, ... ... a, ). Thus under the cycle ( a4, a; ...a,
) each symbol is mapped onto the following symbol except the last one which is mapped

onto the first symbol and all the other symbols not in the cycle are fixed.

Example. Let A = {1,2,3,4,5}. Consider the cycle of length 4 given by p = (2451).

Thenp=(1 2 3 4 5)

2 4 3 5 1
Obviously (2451) = (4512) = (5124) = (1245).

Note. Since cycles are special types of permutations, they can be multiplied in the usual

way. The product of cycles need not be a cycle.

For example, let p; = (234) and p, = (1,5). Then

/1 2 3 4 51 2 3 4 5
plpz_(1 3 4 2 5)(5 2 3 4 1)
:(é g i g i) which is not a cycle.

Definition. Two cycles are said to be disjoint if they have no symbols in common.
For example (2 1 5) and (3 4) are disjoint cycles.

Note. If p; and p, are disjoint cycles the symbols which are moved by p; are fixed by p,

and vice versa. Hence multiplication of disjoint cycles is commutative.
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Examples

1234567)
2 1 3 5 6 7 47

Now write this permutation as a product of disjoint cycles. First of all 1 is moved to 2 and

1. Consider the permutation (

then 2 is moved to 1 thus giving the cycle ( 12 ). The element 3 is left fixed. Again starting
with 4,4 is moved to 5,5 is moved to 6,6 is moved to 7 and 7 is moved to 4 , thus giving
the cycle (4567). Thus
1 2 3 4 5 6 _
G {5 e o o 4)=anusen
= (4567)(12).

B

2. Consider the permutation

/123 45 6 7
“_(2375416)657'

Starting with 1 we get the cycle (123 7 6). The elements 4,5 do not appear in it. Starting
with 4 we get the cycle (45). Each element of the set {1,2, ..., ...,7} occurs in one of these
two cycles.

Thus a = (12376)(45).

3. Consider the permutation

Clearly a = (143)(265).
Theorem 3.10. Any permutation can be expressed as a product of disjoint cycles.

Proof. Let p be a given permutation of the set S = {1,2 ... ... ,n}. Let us start with any
symbol a; € S. Let p(a,) = a,,p(a,) = az ... Since S is finite, these symbols cannot
all be distinct and hence there exists a least positive integer r such that 1 < r < n and

p(ar) =a.

Let ¢ = (aq, ay, - - a,).If r = nthenp = c so that p isa cycle. If r < n, let b; be a
symbol in S such that b; & (ay,a, ... ... , a,-). Starting with b; we can construct the cycle
d = (byb, ... ... ,bs) as before. Clearly the cycles ¢ and d are disjoint. If ¥ + s = n then
p = cd. If r + s < n we repeat the above process to obtain more cycles until all the

symbols appear in one of the cycles. Thus we get a decomposition of p into disjoint cycles.
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Exercise. Express the following permutations as a product of disjoint cycles.

@G 2513
®G 552 1)

(c) (1234)(345)

(d) (13)(34)(45)
(e) (123)(16543)
(f) (4215)(3426)(5671)

123 45 6
(g)(s 5 4 2 6 1)
123 456 7
(h)(s 4 3 7 2 1 6)
Answers.
(a) (14) (35) (b) (135) (24)
© (124)(35) (d)(1543)
(€) (12)(3654) (f) (16347)(25)
(2) (134256) (h) (152476).

Note. The decomposition of a permutation int6 disjoint cycles is unique except for the

order of the factors.

Definition. A cycle of length two is called a transposition. Thus a transposition ( a;a, )

interchanges the symbols a; and a, and leaves all the other elements fixed.

Theorem 3.11. Any permutation can be expressed as a product of transpositions.

Proof. Since any permutation is a product of disjoint cycles it is enough if we prove that
each cycle is a product of transpositions. Hence let ¢ = (a;a; ...a;) be a cycle.

Clearly (a;a; ...a,) = (a1a,)(a,a3) ... ... (a,a,). This proves the theorem.
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Examples

(12345

1'34521

) = (1245) = 12)(149)(15).

Also (1245) = (2451) = (24)(25)(21).

Thus the representation of a permutation as a product of transpositions is not
unique.
2. (1345)(26) = (13)(14)(15)(26) = (13)(12)(12)(14)(15)(26).

Thus in the representation of a permutation as a product of transpositions one can always

insert (ab)(ab) in any place since (ab)(ab) is the identity permutation.

Theorem 3.12. If a permutation p € S, is a product of r transpositions and also a product

of s transpositions then either r and s are both even or both odd.

Proof. Let p = t4t, ... ... ty = tity o . t, where t;, tlf are transpositions. Now consider the
polynomial in n variables x4, x,, ... ... X, given by
A =(x; —x3)(X] — X3) eer v .. (x; — x,)
X (x5 — x3)(Xy — X4) evver . (xy — xp)

X (xn—l —Xp) = 1_[ (xi - xf)

i<j
For any permutation p € S,, we define
p(d) = 1—[ (o) = %p0i)
i<j

Consider the transposition t = (ij). Then the factor x; — x; in A becomes x; — x;. Any
factor ( x; — x; ) of A in which neither i nor j is equal to k or [ is unchanged. All other
factors of A can be paired to form products of the form +(x; — xk)(xk - xj), the sign

being determined by the relative magnitudes of i, j and k. Since ¢ interchanges x; and x;
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any such product is unchanged. Hence the effect of the transposition t on A is just to

change the sign of A ie, t(A) = —A.
& p(A) = (tyty o t)(A) = (—1D)"A

Also p(A) = (1t . t5)(A) = (—1)%A.
&~ (=17 = (—=1)° = r and s are both even or both odd.

Definition. A permutation p € S, is called even or odd according as p can be expressed as
a product of an even number of transpositions or an odd number of transpositions

respectively.

Examples
1. Consider the permutation

p=( 23456 7
36417 25
p = (134)(26)(57) = (13)(14)(26)(57)

~ p is a product of 4 transpositions.

Hence p is an even permutation.

2. Consider the permutation

=(123456789)
P= 5 43617 9 8

p = (1256)(34)(89) = (12)(15)(16)(34)(89)
~ p is a product of 5 transpositions.

Hence p is an odd permutation.

Exercises

1. Determine which of the following permutations are odd and which of them are even.

@G 51564

1 2 3 45 6 7 8
(b)(34216587)

(c) (1234)(356)(67)
(d) (123) (45) (5672).

2. Find all the even permutations in S3 and show that they form a group.
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3. For what values of m is a cycle of length m an even permutation?

Answers.
(i) (a) even (b)odd (c)even (d)even
(i) e, p1, P2

(iii) m is odd.

Theorem 3.13.

(i) The product of two even permutations is an even permutation.

(i1) The product of two odd permutations is an even permutation.

(ii1) The product of an even permutation and an odd permutation is an odd permutation.
(iv) The inverse of an even permutation is an even permutation.

(v) The inverse of an odd permutation is an odd permutation.

(vi) The identity permutation e is an even permutation.

Proof. Let p;, p, be two permutations. If p; is a product of r transpositions and p, is a
product of s transpositions, then p;p, is a product of r + s transpositions. Hence (i), (ii)

and (iii) follow.

Now suppose that a permutation p is a product of r transpositions, say, p = tq,t; ... t;.

Then

pt= (ty by o t) 7
=t 17 =t tyty

p~1is also a product of  transpositions.
This proves (iv) and (v).

Now, e = (12)(12) and hence e is an even permutation which proves (vi).

Theorem 3.14. Let A,, be the set of all even permutations in S,,. Then A,, is a group

.. n! .
containing > permutations.

Proof. From (i), (vi) and (iv) of theorem 3.13 we see that 4,, is a group.
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Now let B,, be the set of all odd permutations in S,,.

Define f: 4, = B, by f(p) = (12)p
fis1—1,for f(p) = f(p2) = (12)p; = (12)p, = p; = p,.

f is onto, for, if @ € By, then (12) a € A, and f[(12)a] = (12)(12)a = «a.

Thus f is a bijection and hence the number of odd permutations in S,, = the number of

. . . . . n!
even permutations in S,,. Since S, contains n! permutations, A, has > elements.

Definition. The group A4,, of all even permutations in S, is called the alternating group on

n symbols

Exercises

1. Let G be a group of permutations. Show that either all the permutations in G are even
or exactly half of them are even.

2. Letp be a permutation of a set A. Let a € A we say that p moves a if p(a) # a. How
many elements are moved by a cycle of length ?

3. Show that the set of all permutations in S,, fixing the symbol 1 is a group.

4. Write down all the permutations of the set {1,2,3,4} and determine which of them are
even.

5. Determine which of the following statements are true and which of them are false.
(a) Every cycle is a permutation.

(b) Every permutation is a cycle.

(c) Product of two cycles is a cycle.

(d) Any transposition is an odd permutation.

(e) When n > 3, S, is nonabelian.

(f) Any permutation can be expressed as a product of cycles.

(g) The set of all odd permutations in S,, is a group.

(h) Any finite group is abelian.

Answers.

1. r elements
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2. (a) True (b) False (c) False (d) True
(e) True (f) True. (g) False s (h) False.

3.5. Subgroups
Definition. Let G be a set with a binary operation * defined on it. Let S € . If for each
a,b € G,a*b (computed in G) is in S, we say that S is closed with respect to the binary

operation " *".

Examples

1. (Z,+ ) is a group. The set E of all even integers is closed under + and further ( E, + ) is
itself a group.
2. The set of G of all non-singular 2 X 2 matrices form a group under matrix

cos O —sin 6

Gin 0 cos O ) H is subset of

multiplication. Let H be the set of all matrices of the form (

G. Also H itself is a group under matrix multiplication.

Definition. A subset H of group G is called a subgroup of H if H forms a group with

respect to the binary operation in G.

Examples.

1. Let G be any group. Then {e} and G are subgroups of G. They are called improper
subgroups of G.

2. (Q,+)isasubgroup of (R,+)ad (R, +)is asubgroup of (C, +).

3. In (Zg,®), let H; = {0,4} and H, = {0,2,4,6}. The Cayley tabels for H; and H, are

given by
® | 0 4
0 0 4
4 4 0
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S O BN
N OO N BB
EENE S B ) Be))

0
0
2
4
6

(=)W "N \S B -]

It is easily seen that H; and H, are closed under @ and ( H;,& ) and ( H,,& ) are groups.

Hence H; and H; are subgroups of Zg.

4. {1,—1} is a subgroup of (R*,").

5. {1,i,—1,—i} is a subgroup of (C*,-).

6. Inthe symmetric group S3, H; = {e,p1,p2};
H, = {e,ps}; H3 = {e, p4}; and

H, = {e, ps} are subgroups.

7. A, is a subgroup of S, (by theorem 3.14).

9. The set of permutations {e, p;, P2, P3} where

=(1 53 =07 33
=3 31 Jn=( 52 )

is a subgroup of S.

Note. In all the above the examples we see that the identity element in the subgroup is the

same as the identity element of the group.

Theorem 3.15. Let H be a subgroup of G. Then
(a) the identity element of H is the same as that of G.

(b) for each a € H the inverse of a in H is the same as the inverse of a in G.

Proof. (a) Lete and e’ be the identities of G and H respectively.
Let ae H. Now,
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e'a= a( since e’ is the identity of H)
= ea( since e is the identity of
G and a € G)

~ e'a=ea.
. e'= e( by cancellation law ).

(b) Let a’ and a” be the inverse of a in G and H respectively. Since by (a), G and H have

the same identity element e, we have a’a=e=a"a. Hence by cancellation law a'=a".

Theorem 3.16. A subset H of a group G is a subgroup of G iff
(i) it is closed under the binaty operation in G.

(i1) The identity e of G is in H.

(ii)a € H=>at€eH.

Proof. Let H be a subgroup of G. The result follows immediately from theorem 3.15.

Conversely let H be a subset of G satisfying conditions (i), (ii) and (iii). Then, obviously H

itself is a group with respect to the binary operation in G.

Therefore H is a subgroup of G.
Theorem 3.17.

A non-empty subset H of a group G is a subgroup of G iffa,b € H = ab™! € H.
Proof. Let H be a subgroup of G. Thena,b € H = a,b™* € H = ab™! € H.
Conversely let H be a non-empty subset of G such thata,b € H= ab™! € H.

Since H # &, there exists an element a € H.

Hence aa™! € H. Thus e € H

Also since e,a € H,ea ! € H. Hence a™! € H.

Now, leta,b € H. Thena,b™! € H

Hence a(b™1)~1 = ab € H. Thus H is closed under the binary operation in G.
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Hence by theorem 3.16 H is a subgroup of G.
Note. If the operation is + then H is a subgroup of G iffa,b € H=a—b € H.

Theorem 3.18. Let H be a non-empty finite subset of G. If H is closed under the operation
in G then H is a subgroup of G.

Proof. Leta € H.
Since H is closed a, a?, a®, ... ... ,a™ ... are all elements of H. But since H is finite the

elements a, a?, a3, ... ... cannot all be distinct.

Hence leta” = a%,r < s. Thena’™" =e € H.

Now, let a € H. We have proved that a = e for some n.

Hence aa™ ! = e. Hence a™! = @~ € H.. Thus H is a subgroup of G.

Note. The above theorem is not true if H is infinite. For example, N is an infinite subset of

(Z,+) and N is closed under addition. However N is not a subgroup of ( Z, + ).

Theorem 3.19. If H and K are subgroups of a group G then is H N K is also a subgroup of
G.

Proof. Clearly e e HNK and hence HNK is non-empty. Now let a,b € H N K. Then

a,b € Hand a,b € K. Since H and K are subgroups of G, ab™! € H and ab™! € K.

~ ab™! € H n K. Hence by theorem 3.17, H N K is a subgroup of G.

Note.

1. It can be similarly proved that the intersection of any number of subgroups of G is
again a subgroup of G.

2. The union of two subgroups of a group need not be a subgroup.

For example, 2Z and 3Z are subgroups of ( Z, + ) but 2Z U 3Z is not a subgroup of Z since
32€2ZU3Zbut3+2=5¢ 2ZU3Z.

Theorem 3.20. The union of two subgroups of a group G is a subgroup iff one is contained

in the other.
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Proof. Let H and K be two subgroups of G such that one is contained in the other. Hence
either H S K orK € H.

~ HUK=KorHUK = H. Hence H U K is a subgroup of G.

Conversely, suppose H U K is a subgroup of G. We claimthat H € K or K € H.
Suppose that H is not contained in K and K is not contained in H. Then there exist

elements a, b such that

a€H and a€K. ... ....()
beK ad b&H.......(2)

Clearly a,b € HU K. Since H U K is a subgroup of G,ab € H U K. Hence ab € H or
ab € K.

Case (i) Letab € H.sincea € H,a ' € H.

Hence a~*(ab) = b € H which is a contradiction to (2).

Case (ii) Let ab € K. Since b € K,b™! € K.

Hence (ab)b™! = a € K which is a contradiction to (1).

Hence our assumption that H is not contained in K and K is not contained in H is false.

~ HESKorKCH.

Definition. Let A and B be two subsets of a group G. We define AB = {ab/a € A,b € B}.
Note. If A and B are two subgroups of G, AB need not be a subgroup of G.
Example.
In S5, consider A = {e,ps} and B = {e, p,}. Clearly A and B are subgroups of S;.
Also AB = {ee, ep,, eps, pspa} = {€, s, P3, P2}
Now, pyp, = ps & AB.
Hence AB is not a subgroup of S5.
Theorem 3.21. Let A and B be two subgroups of a group G. Then AB is a subgroup of G
iff AB = BA.
Proof. Let AB be a subgroup of G.
We claim that AB = BA.
Let x € AB. Since AB is a subgroup of G, x™! € AB.
Letx™! = ab where a € Aand b € B.

~ x=(ab) "t =b"ta?
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Since A and B are subgroups of G,a™! € A and b™! € B.
~ x €E BA.Hence ABCS BA ...........(1)

Now, let x € BA. Then x = ba where b € B and a € A.

~xt=(ba)'=a"'bh 1€ AB
Now, since AB is a subgroup and x~! € AB, we have x € AB,

& BACAB ... e ... (2)

From (1) and (2) we get AB = BA.
Conversely, let AB = BA. We claim that AB is a subgroup of G. Clearly e € AB and hence
AB is non-empty. Now let x,y € AB. Then x = a;b; and y = a,b, where a,,a, € A and
by, b, € B.

.~ xy~' = (a;b))(aby)~" = a;b; by 'as’".
Now, by 'a;! € BA. Since BA = AB, b;'a;' € AB

~ by'a;! = a;by where a; € Aand b; € B. . xy~! = a,b,a3b;.

Now bja; € BA. Since BA = AB, b;a; € AB.

~ biaz = a4by where a4 € A and by € B.

~ xy~' = a;(asbs)by = (a,a,4)(bsbs) € AB.

~ AB is a subgroup of G.

Corollary. If A and B are subgroups of an abelian group G, then AB is a subgroup of G.
Proof. Let x € AB. Then x = ab where a € A and b € B. Since G is abelian, ab = ba.

~ x € BA. Hence AB € BA.
Similarly BA € AB.

~ AB = BA.

Hence AB is a subgroup of G.

Solved problems

Problem 1. Let a € R*. Let H = {a™/n € Z}. Then H is a subgroup of R*.
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Solution. Clearly H is non-empty.

Now, let x,y € H.

Then x = a® and y = a* where s,t € Z.

xy t=a%@) t=a5t €H.

Hence H is a subgroup of R".

Problem 2. Let H denote the set of all permutations in S, fixing the symbol 1. Then H is
a subgroup of S,.

Solution. Clearly e € H and hence H is non-empty. Let @, § € H. Then a and f fix the
symbol 1. Now f fixes the symbol 1 = S~ fixes the symbol 1 . Hence a8~ fixes the
symbol 1 . Hence a1 € H.

Thus H is a subgroup of S,,.

Problem 3. Let G be the set of all 2 X 2 matrices with entries from R. Then G is a group

under matrix addition.

a 0
0 b

Solution. Let A,B € H.

Then A = (g 2) and B = ((C) 2)

Now, 4B = (¢ 2)—(8 2)=(“‘8 b_g)eH.

Hence H is a subgroup of G.

LetH = {( )| abe R}. Then H is a subgroup of G.

Problem 4. Let G be a group.

Let H = {a/a € G and ax = xa for all x € G}.
(i.e) H is the set of all elements which commute with every other element. Show that H is
a subgroup of G.

Solution. Clearly ex = xe = x forall x € G.
Hence e € H, so that H is non empty.

Now, leta,b € H.

Then ax = xa and bx = xb forall x € G.
Now, bx=xb

= b~ Y (bx)b~! = (xb)b~?

(b~*b)xb~t = b 1x(bb™1)
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s~ (ab ™ Hx=alb™x)
= a(xb™") (by (1))
= (ax)b™1
= (xa)b~! ( since ax = xa)
=x(ab™).
Thus ab™! commutes with every element of G.

~» ab™! € H and hence H is a subgroup of G.

Note. The above subgroup of G is called the centre of G and is denoted by Z(G).

Problem 5. Let G be a group and let a be a fixed element of G.
LetH, = {x | x € G and ax = xa}

(ie) H, is the set of all elements in ¢ which commute with a.
Show thatH,, is a subgroup of G.

Solution. Clearly ea = ae = a.

Hence e € H, so that H, is non-empty.

Now, let x,y € H,,.

Then ax = xa and ay = ya.

Now, ay = ya = y~'a = ay~?. (as in the pervious problem)

a(xy™!) = (ax)
= (xa)y~! (since ax = xa)
= x(ay™)
=x(y7ta)  (by (D)
= (xy Da.
Hence xy~! commutes with a.
=~ xy~! € H, and hence H,, is a subgroup of G.
Note. H, is called the normaliser of a in G.
Exercises
1. Show that {a + bi/a, b € Z} is a subgroup of (C, +).
2. Determine which of the following are subgroups of ( C, + )
(a R

(b) {a + b¥=5/a,b € N}
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© {z/12] = &)

(d) {z/ real part of z is 0}

(e){1,i,—1,—i}.

3. Let G; and G, be two groups. Let e; and e, be the identity elements of G; and G,
respectively. Let G; X G, be the direct product of these groups. Let H = {(e1,y)/y € G5}
and K = {(x,e,)/x € G}. Show that H and K are subgroups of G; X G,.

3.6. Cyclic Groups

Definition. Let G be a group. Leta € G.

Then H = {a™/n € Z} is a subgroup of G. H is called the cyclic subgroup of G generated
by a and is denoted by (a).

Examples

1. In (Z,+),(2) = 2Z which is the group of even integers.

2. Inthe group G = (Z1,,®),(3) = {0,3,6,9}. (5) = {0,5,10,3,8,1,6,11,4,9,2,7} = Z,,.
3. Inthegroup G = {1,i — 1,—i}i) = {i,i% ..} = {i,—1,—i,1} = G.

Definition. Let G be a group and let a € G. a is called a generator of G if (a) = G.

A group G is cyclic if there exists an element a € G such that (a) = G.

Note. If G is a cyclic group generated by an element a, then every element of G is of the

form a™ for some n € Z.

Examples

1. (Z,+)isacyclic group. 1 is a generator of this group. -1 is also a generator of this
group. Thus a cyclic group can have more than one generator.

2. (nZ,+)isacyclic group, n and —n are generators of this group.

3. (Zg,® )isacyclic group. 1,3,5,7 are all generators of this group.

4. (Z,,@ )isacyclic group for all n € N; 1 is a generator of this group. In fact if

m € Z, and (m,n) = 1 then m is a generator of this group.

5. G ={1,i,—1, =i} is a cyclic group under usual multiplication; i is a generator, —i is

also a generator of G. However -1 is not a generator of G since (—1) = {1,—1} # G.
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6. G ={1,w, w?} where w # 1 is a cube root of unity is a cyclic group. w and w? are
both generators of this group.

7. 1In the group G = (Z,,—{0},©), 3 and 5 are both generators. Here 2 is not a generator
of G since (2) = {2,4,1} # G.

8. Let A be a set containing more than one element. Then ( 2(A), A ) is not cyclic; for let
B € §(A) be any element. Then BAB = ® so that (B) = {B, ®} # £ (4).

9. (R,+)isnota cyclic group since for any x € R, (x) = {nx/n € Z} # R.

Exercises

Determine which of the following groups are cyclic. If it is cyclic find all the generators of

the group.
1. (6Z,+).
2. (Q+).

The set of all n' roots of unity under multiplication.
The group of symmetries of an equilateral triangle.

The group of symmetries of a rectangle.

{2"/n € Z} under usual multiplication.
(Z2,®)
(R,)

10. (Z1;, = (0),0)

11. G = (e, p1, P2, P3,Ps) Where

3
4
5
6. The group of symmetries of a square.
7
8
9

/1 2 3 45
e_(12345)
=(12345)
P1=\ 3 4 5 1
=(12345)
P23 4 5 1 2
12 3 45
p3:(45123)and
=(12345)
P+=\5 1 2 3 14

Answers. 1,3,7,8,10 and 11 are cyclic.
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Theoérem 3.22. Any cyclic group is abelian.
Proof. Let G = (a) be a cyclic group.

Letx,y € G. Thenx = a” and y = a® for some r,s € Z.

Hence xy = a"a® = a"* = a*" = a’a” = yx.

~ G 1s abelian.

Theorem 3.23. A subgroup of cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a and let H be a subgroup of G. We claim that

H is cyclic.

Clearly every element of H is of the form a™ for some integer n.

Let m be the smallest positive integer such that a™ € H. We claim that a™ is a generator

of H.

Letb € H. Then b = a™ for some n € Z.
Letn =mq + r where 0 <r < m.

Then b = a™ = ™It = g™4q" = (a™)%a’.

AT = (@) TID e s e et e

Now, a™ € H. Since H is a subgroup, (a™)™? € H.

Alsob € H.
By (1),a" €lland0 <r <m.

But m is the least positive integer such that a” € H.

~ v =0.Hence b = a™ = a9 = (a™)4.
=~ Every element of H is a power of a™.

~ H = (a™) and hence H is cyclic

Exercises

(1)

1. Prove that if a is a generator of a cyclic group G then a™? is also a generator of G.

2. Prove that any subgroup of (Z, +) is of the form nZ for some integer n.
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3. Find the number of elements in the following cyclic subgroups.
(a) (2) in (Z15,D)

(b) (18) in (Z30,®)

(c) (5) in (Zgo,D)

(d) (i) in C*

4. Show that every proper subgroup of V, is cyclic. (However V, is not cyclic).
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3.7. Order of an Element
1. Consider the group S5 given in 3.4

1 2 3

P1=(2 3 1);

=G 3 )G 3 1)

=(; 1 J)=r

=G 1 )G 3 1)
1 2 3

:(1 2 3)=e'

In this case 3 is the least positive integer such that p3 = e. Also (p;) = {e,p1,p2}isa
subgroup of S; of order 3.

2. Consider (R*,-). From the sequence of elements 2, 22,23 ..2M ... In this case there is
no positive integer n such that 2" = 1 and (2) contains infinite numbers of elements.
Definition. Let G be a group and let a € G. The least positive integer n (if it exists) such
that a™ = e is called the order of a. If there is no positive integer n such that a™ = e, then
the order of a is said to be infinite.

Note.

1. Inexample 1, p; is of order 3 and 2 is of infinite order in example 2.

2. In(C*),i is an element of order 4.

Exercises

1. Show that in any group G, e is the only element of order 1.

Find the order of -1 and 3 in ( Z, + ).

Find the order of -1 and 3 in (R*,).

Find the order of -1 and —i in (C*,-).

zFind the order of 2 and 3 in ( Zg,D ).

Show that in V, the order of every element other than the identity is 2 .

Show that in (Z, +) the order of every element other than 0 is infinite.

Show that in ( §(S), A ) the order of every element other than & is 2 .

° ® N kWD

Show that in (C*,-) for every positive integer n there exists an element of order n.
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Answers.

2. Infinite

3. Order of -1 is 2 and order of 3 is infinite
4. Order of -1 is 2 and Order of i is 4

5. Order of 2 is 4 and Order of 3 is 8§

Theorem 3.24. Let G be a group and a € G. Then the order of a is the same as the order of
the cyclic group generated by a.

Proof. Let a be an element of order n. Then a™ = e. We claim that e, a, a?, ...,a" ! are all
distinct.

Suppose a” = a® where 0 < r < s < n.

Then a®*™" = e and s — r < n which contradicts the definition of the order of a. Hence

2

e aa?, .. a1t

are n distinct elements and {(a) = {e, a, a?, ..., 2" 1} which is of order n.
If a is of infinite order, the sequence of elements a, a?,...,a", ... are all distinct and are in

(a). Hence (a) is an infinite group.

Theorem 3.25. In a finite group every element is of finite order.
Proof. Let a € G. If a is of infinite order, then (a) is an infinite subgroup of G, which is a
contradiction since G is finite. Hence the order of a is finite.
Remark. The converse of the above theorem is not true. (ie) if G is a group in which every
element is of finite order then the group G need not be finite.
Example. If S is any infinite set, then (§(S), A) is an infinite group. In this group AAA =
@ for every A € p(S) so that the order of every element other than @ is 2 .
Theorem 3.26. Let G be a group and a be an element of order n in G. Then a™ = e iffn
divides m.
Proof. Suppose n | m. Then m = nq where q € Z.

sam=a" = (a1 =e9=e.
Conversely, let a™ = e.
Letm =nqg +r where 0 <r <n.
Loa™ =gt = gMa” =ea” =a’.

~a" =eand 0 <r < n.
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Now, since n is the smallest positive integer such that a® = e, we have r = 0. Hence

m = nq.

Therefore n | m.

Theorem 3.27. Let G be a group and a, b € G.
Then

(i) order of a = order of a™1.

(i) order of a = order of b~ 1ab.

(iii) order of ab = order of ba.

Proof. (i) Let a be an element of order n.
Then a™ = e.

a@Hr=(@) l=el=e.

Now, if possible let 0 < m < n and (a™1)™

= e.

s~ (@™) ™! = e. Hence a™ = e which contradicts the definition of the order of a. Thus n is

the least positive integer such that (a™1)" = e.

= The order of a™? is n.

(i1) We shall first prove that for any positive integer r.

(b~ ab) =b7a"b ... .

(1) is trivialy true if r = 1,

Now, suppose that (1) is true for 7 = k so that (b~tab)* = b~ta*b.

Then

(b~ ab)**1= (b=lab)*(b~'ab).
= (b~ 'a*b)(b~tab).
= b~ tak*1p.

Hence by induction (1) is true for all positive integers.
Now, let a be an element of order n. Then a™ = e.
o (b~ tab)® = b~1a"™b ( by (1))
=b7leb=¢e

Now, if possible, let 0 < m < n and (b~tab)™ = e.

~ b~ 'a™b = e. Hence a™ = e which contradicts the definition of the order of a.
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Thus 7 is the least positive integer such that (b~ 1ab)™ = e.
». The order of b~1ab is n.
(111)
order of ab= the order of a~(ab)a (by (ii))
= the order of ba.

Theorem 3.28. Let G be a group and let a be an element of order n in G. Then the order of
a®, where 0 < s < n, is n/d where d is the g.c.d of n and s.

Proof. Let (n/d) = k and (s/d) = [ so that k and [ are relatively prime.

Now, (a%)¥ = a’% = @l = g = (g")! = e.

Further if m is any positive integer such that (a*)™ = e then a*™ = e.

Since order of a is n, we have n | sm.

~ kd | ldm. Hence k | lm

But k and [ are relatively prime.

Hence k/m so that m > k.

Thus k is the least positive integer such that (a%)* = e.

~ orderof a®* = k =n/d.

Corollary 1. The order of any power of a cannot exceed the order of a.

Corollary 2. Let G be a finite cyclic group of order n generated by an element a. Then a®
generates a cyclic group of order n/d where d is the g.c.d of n and s.

Corollary 3. Let G be a finite cyclic group of order n generated by an element a. a® is a
generator of G iff s and n are relatively prime. Hence the number of generators of a cyclic
group of order n is ¢p(n) where ¢p(n) is the number of positive integers less than n and
relatively prime to n.

Example. Consider the group ( Z1,,P ).

¢(12) = 4. Hence the group has exactly 4 generators and they are 1,5,7 and 11 .

Solved Problems
Problem 1. If G is a finite group with even number of elements then G contains at least
one element of order 2.

Solution. a is an element of order 2 @ a> = e @ a ! = a.
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Hence it is enough if we prove that there exists an element different from e in G whose
inverse is itself.

LetS={a/a € G,a+ a1}

Clearlya € S>al€eSanda #a™ L.

Hence S contains an even number of elements.

Alsoe & S.

Hence S U {e} contains an odd number of elements. Since the order of the group is even,
there exists at least one element a & S U {e}. Clearly a = a™ 1.

Problem 2. The order of a permutation p is the 1.c.m. of the lengths if its disjoint cycles.

Solution. Let p = c¢¢; ..., ¢, where the ¢; 's are mutually disjoint cycles of lengths ;.

Now, let p™ = e.

m,.m

et

Since product of disjoint cycles is commutative, e = p™ = (¢1¢5 ...¢;)™ = ¢4 et
Now, since the elements moved by one cycle are left fixed by all the other cycles, ¢i* =
=, =e.

Now, ci* = ¢ = l; | m since the order of ¢; = [;. Similarly [,, [, ..., [, divide m.

Thus m is a common multiple of 4, 5, ..., ;..

-~ The order of p is the least such m which is obviously the l.c.m of [, [, ..., ;..
Problem 3. If a is a generator of the cyclic group G and if there exist two unequal integers
m and n such that a™ = a", prove that G is a finite group.

Solution. Since m and n are unequal we may assume that m > n.

Hence m — n is a positive integer.

Alsoa™ =a" =>am™ " =e.

~ Order of a is finite.

~ G = (a) is a finite group (by theorem 3.24)

Exercises

1. Show that a group G of order n is cyclic iff G contains an element of order n.

2. Find the number of generators of the cyclic groups of orders 8,24 and 60.

3. Letp and q be prime numbers. Find the number of generators of Z,,.

4. Find the number of generators of Z,,, where p is prime.
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5. Find two elements a, b in a group such that

(a) order of ab # (order of a ) (order of b ).

(b) order of ab = (order of a ) (order of b ).

6. Find the order of the following permutations.
1 3 4

@ 53 1)
1 3 45 6 7

(b)(5764123)

(c) (12345)(67)(1657)
(d) (12) (23) (345) (1456).

N WIN

Answers.

2. 4,8and 16

6.(a)4()4(c)7(d)6

3.8. Cosets and Lagrange's Theorem

Definition. Let H be a subgroup of a group G. Let a € G. Then the set aH = {ah/h € H}
is called the left coset of H defined by a in G.

Similarly Ha = (ha/h € H) is called the right coset of H defined by a.

Examples.

1. Let us determine the left cosets of ( 5Z, + ) in (Z, +). Here the operation is + .

0 + 5Z = 5Z is itself a left coset.

Another left cosetis 1 + 5Z = {1 + 5n/n € Z}. We notice that this left coset contains all
integers having remainder 1 when divided by 5 .

Similarly

2+5Z={2+5n/n€Z}
3+5Z={3 +5n/n €Z}.
and 4 + 5Z= {4 + 5n/n € Z}.

These are all the left cosets of ( 5Z, + ). Here also we note that all the left cosets are
mutually disjoint, and their union is Z. In other words the collection of all left cosets forms

a partition of the group.
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2. Consider (Z;,,). Then H = {0,4,8} is a subgroup of G.
The left cosets of H are given by

0+H={048}=H

1+ H={15,9}

2+ H={2,6,10}
and 3+ H= {3,7,11}

We notice that

4+ H=1{48,0}=H.and
54+H={591}=1+H etc.

Exercises.

1. Find all the left cosets of (nZ,+ )in (Z,+ ).

2. Find all the left cosets of {0,3,6,9} in (Z,,,D).
3. Find all the left cosets of {1,6} in (Z, — {0},O© ).

Theorem 3.29. Let G be a group and [ be a subgroup of G. Then
(i)a€H =>aH =H

(ii)aH = bH > a b € H.

(ill)a € bH > a* € Hb™L.

(iv)a € bH = aH = bH.

Proof.

(i) Let a € H. We claim that aH = H.

Let x € aH. Then x = ah for some h € H.

Now,a € Hand h € H = ah = x € H (since H is a subgroup).
Hence aH € H.

Let x € H. Then x = a(a™'x) € aH.

Hence H € aH. Thus H = aH.

Conversely, letaH = H. Now a = ae € aH.

~ a€H.

(ii) Let aH = bH.

~ a~YaH) = a”*(bH).

~ H=(a'h)H.

~ a“'beHby).
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Conversely let a™b € H.

Then a™bH = H (by ).

~ aa”bH = aH and hence bH = aH.

(iii) Let a € bH. Then a = bh for some h € H.
~al=(mh)t=hr"1b"teHb L

Converse can be similarly proved.

(iv) Let a € bH. We claim that aH = bH.

Let x € aH. Then x = ah, for some h; € H.
Alsoa € bH = a = bh, for some h, € H

s~ x = (bhy)hy) = b(h,h,) € bH.

~ aH € bH.

Now, let x € bH. Then x = bhs for some h; € H.
Also from (1), b = ah; .

~ x =ahyh; € aH.

~ bH € aH. Hence aH = bH.

Conversely, let aH = bH.

Thena = ae € aH.

~ a € bH.

Theorem 3.30. Let H be a subgroup of G. Then
(i) any two left cosets of H are either identical or disjoint.
(i1) union of all the left cosets of H is G.

(ii1) the number of elements in any left coset aH is the same as the number of elements in
H.

Proof.

(i) Let aH and bH be two left cosets.

Suppose aH and bH are not disjoint.

We claim that aH = bH.

Since aH and bH are not disjoint, aH N bH # .
=~ There exists an element ¢ € aH N bH.

~ ¢ €EaH and c € bH.

~ aH = cH and bH = cH (by (iv) of Theorem 3.29).
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~ aH = bH.

(ii) Leta € G. Thena = ae € aH.

=~ Every element of G belongs to a left coset of H.

=~ The union of all the left cosets of H is G.

(ii1) The map f: H = aH defined by f(h) = ah is clearly a bijection. Hence every left
coset has the same number of elements as H.

Note 1. This theorem shows that the collection of all left cosets forms a partition of the
group.

Note 2. The above result is true if we replace left cosets by right cosets. In what follows,
the results we prove for left cosets are also true for right cosets.

Remark. Let H be a subgroup of G. We define a relation in G as follows. Define a ~ b &
albeH.

Then ~ is an equivalence relation.

For,a™'a = e € H. Hence a ~ a.

Hence ~ is reflexive.

a~b=>a'hbeH=(a'h)"teH.
>blaeH=>b~a.
~a~b>b~a.

Hence ~ is symmetric.

Now,a~bandb~c=a'be€Handb 'c € H

= (@) (b c)eH
=>alceH
>a~c

Hence ~ is transitive.

Thus ~ is an equivalence relation.

Now, we claim that equivalence class [a] = aH.
Letb € [a]. Then b ~ a.

~abeH.

~ a” b = hforsome h € H.

~ b =ah. Hence b € aH.

~ [a] € aH.

Also,
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b € aH=> b = ah for some h € H.
=>ab=heH.
>a~»b
= b € [a].

Thus the left cosets of H in G are precisely the equivalence classes determined by ~.
Hence the left cosets form a partition of G. This gives another proof of Theorem 3.30.
Theorem 3.31. Let H be a subgroup of G. The number of left cosets of H is the same as
the number of right cosets of H.

Proof. Let L and R respectively denote the set of left and right cosets of H. We define a
map f:L - Rby f(aH) = Ha™ .

To prove fis well defined.

Now aH =bH.= a 'beH

=>aqaleHp?
= Ha '=Hb?

Therefore f is well defined.
To prove fis 1 — 1.

Now

f(aH)= f(bH)
= Ha '=Hb?
=>aleHp?
= a1 =hb~? for some h € H.
= a=bh!
= a € bH
= aH = bH.

Therefore fis 1-1

To prove f is onto.

Every right coset Ha has a pre-image under f namely a ™ 1H.

Hence f is a bijection from L to R. Hence the number of left cosets is the same as the
number of right cosets.

Definition. Let H be a subgroup of G. The number of distinct left (right) cosets of H in G
is called the index of H in G and is denoted by [G: H].

Example. In (Zg,®), H = {0,4} is a subgroup. The left cosets of H are given by
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0+H={04=H

1+H = {1,5}
2+H={26}
3+H={37}

These are the four distinct left cosets of H.
Hence the index of the subgroup H is 4 .
Note that [Zg: H] X |H| = 4 X 2 = 8 = |Zg].

Exercises

1. Find the index of (nZ,+) in (Z,+).

2. Find the index of (8Z,+) in (2Z,4+).

3. Find the index of {0,3,6,9} in (Z,,,D).

4. Find the index of {1,6}in(Z,; — {0},©)

5. Determine which of the following statements are true and which are false
Let G be a group and H a subgroup of G, Then

(a) H itself is a left coset of H.

(b) The identity element belongs to every left coset of H.

(c) Every element of H belongs to at least one left coset of H.

(d) Every element of H belongs to exactly one left coset of H.

(e) The number of left cosets of H is the same as the number of right cosets of H.
(f) If b € Ha then Ha = Hb.

(g)Ifc € Han Hb then Ha = Hb = Hc.

(h)a € H ifand only if aH = H.

Answers.
5@T ) F(c)T)T
E@TMOTETMmT

Theorem 3.32. (Lagrange's theorem) Let G be a finite group of order n and H be any
subgroup of G. Then the order of H divides the order of G.
Proof. Let |H| = mand [G:H] = .

Then the number of distinct left cosets of H in G is 1.
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By theorem 3.30, these r left cosets are mutually disjoint, they have the same number of
elements namely m and their union is G.

«~ n = rm. Hence m divides n.

Corollary. [G: H] = %

Note 1. Lagrange's theorem has many important applications in group theory.

Example. A group G of order 8 cannot have subgroups of order 3,5,6 or 7 . In fact any
proper subgroup of G must be of order 2 or 4 .

Note 2. Any group of prime order has no proper subgroups.

Note 3. The converse of Lagrange's theorem is false. (i.e) If G is a group of order n and m
divides n, then G need not have a subgroup of order m.

Example.l A, is a group of order 12 and it does not have a subgroup of order 6 .
However there are groups in which the converse of Lagrange's theorem is true.

Example. Consider S5. This is a group of order 6. {e, p,} is a subgroup of order 2 and

{e, p1,p2} is a subgroup of order 3 . Hence for every divisor m of 6 , there is a subgroup of

S of order m.

Exercises.

1. Can a group of order 12 contain a subgroup of order 8?

2. Show that the converse of Lagrange's theorem is true in V.

3. Show that the converse of Lagrange's theorem is true in any finite cyclic group.
Theorem 3.33. The order of any element of a finite group G divides the order of G.
Proof. Let G be a group of order n. Let a € G be an element of order m. Then the order of
a is the same as the order of the cyclic group (a).

Now, by Lagrange's theorem the order of the subgroup (a) divides the order of G. Hence
m|n.

Theorem 3.34. Every group of prime order is cyclic.

Proof. Let G be a group of order p where p is prime. Leta € G and a # e.

By Theorem 3.33 order of a divides p.

~ Orderofais 1 orp.

Since a # e order of a is p.

Hence G = (a) so that G is cyclic.
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Theorem 3.35. Let G be a group of order n. Let a € G then a™ = c.

Proof. Let the order of a be m. Then m divides n.

Hence n = mgq.

La=a™ = (@) =c?=c.

Theorem 3.36 (Euler's theorem) If n is any integer and (a,n) = 1 then a®™ =
1(modn).

( (n) is the number of positive integers less than n relatively prime to n )

Proof. Let G = {m/m < n and (m,n) = 1}. G is a group under multiplication modulo n.
This group is of order ¢ (n).

Now, let (a,n) = 1.

Leta = qn +1;0 < r < n so that a = r(modn).

Since (a,n) = 1 we have (n,r) = 1 so thatr € G.

. (M =1 (by Theorem 3.35).

» ™M = 1(modn).

Also a®™ = r®(™ (modn) so that

a®™ = 1(modn) (since ' = 'is transitive).

Theorem 3.37 (Fermat's theorem) Let p be a prime number and a be any integer
relatively prime to p. Then a?~! = 1(modp).

Proof. Since p is prime, ¢(p) = p — 1 and hence the result follows from Euler's theorem.
Theorem 3.38. A group G has no proper subgroups if it is a cyclic group of prime order.
Proof. Suppose G is a group of prime order. Then it follows from Lagrange's theorem that
G has no proper subgroups.

Conversely, let G be a group having no proper subgroup. First we shall prove that G is
cyclic.

Suppose G is not cyclic. Leta € G and a # e.

Then the cyclic group (a) is a proper subgroup of G which is a contradiction. Hence G is
cyclic.

Also G cannot be infinite, for, an infinite cyclic group contains a proper subgroup {a?).
Hence G must be of finite order, say, n.

We claim that n is prime. If possible let n be a composite number. Let n = pq where

p,q>1
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Let a € G be a generator of the group.

Then (aP) is a subgroup of order g and hence is a proper subgroup of G which is a
contradiction.

Hence n is prime.

~ G is a cyclic group of prime order.

Solved problems
Problem 1. Let A and B be subgroups of a finite group G such that A is a subgroup of B.
Show that [G: A] = [G: B][B: A].

Solution. [G: A] = % (by Lagrange's theorem)

[G:B]=m
|B|
and [B:A]=@
4]
~ [G:B][B:A]= ﬂﬁ:ﬂ: [G:A].
|BI 4] |A]

Problem 2. Let A and B be two finite subgroups of a group G such that |A| and |B| have
no common divisors. Then show that A N B = {e}.

Solution. A N B is a subgroup of A and B.

~ By Lagrange's theorem, |A N B| divides |A| and |B|. But by hypothesis |A| and |B| have
no common divisors.

~ |[ANnB|=1.Hence AN B = {e}.

Problem 3. Let H and K be two subgroups of G of finite index in G. Prove that H N K is a
subgroup of finite index in G.

Solution. By theorem 3.19 H N K is a subgroup of G.

Let [G:H] =m and [G: K] = n.

We claim that for any a € G, (H N K)a = Ha N Ka

Clearly, HN K € H and K

(HNK)a € Ha and Ka.

(HNnK)a< HanKa...... (D

Now, let x € Ha N Ka. Thenx € Ha and x € Ka

= x = ha forsome h € H and x = ka for some k € K.
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~ha=ka=>h=k=>heHNK=>x€ (HnNK)a.
~HanKa< (HnK)a....(2)

From (1) and (2) we have

(HNnK)a =HanKa.

Every right coset of H N K in G is the intersection of a right coset of H and a right coset of

K.

Also since [G: H] = m, the number of right cosets of H in G is m.

Similarly the number of right cosets of K in G isn. Hence the number of right cosets of
H N K in G is at most mn.

~ [G:HNK] <mn.

~ H N K is a subgroup of finite index in G.

Problem 4. Let H and K be two finite subgroups of a group G. Then

_ H]IK]
|H N K|

|HK|

Proof. Let L = H N K. Since H and K are subgroups of G, L is also a subgroup of G and
LC HandL C K.

Now, let Lxq, Lx5, ..., Lx,, be the distinct right cosets of L in K so that

K =Lx;ULxy,U--ULxp,........ (D
.71 — KL 1K

m=[K:L] = L] = TR 2)

From (1)

HK = H(Lxy) UH(Lx;)U--UH(Lxy,)
= HLx; UHLx, U --UHLx, (sinceL € H)........ 3)

We claim that the cosets Hx,, Hx,, ..., Hx,, are distinct.
Suppose Hx; = Hx;.
= x;x; " € H.
Also x;,x; € K and hence xl-x]-_1 EK.
=>xx ' €EHNK =L,
= Lx; = Lx; which is a contradiction since the cosets Lxy, Lx5, ..., Lx,, are distinct.

Thus, from (3) we have:
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|HK| = |Hx,| + |Hx,| + -+ + |Hxp,| = m|H|
_ K]

|HNK]|

_ IHIIK|

|HN K|

|H|  (by(2))

Problem 5. Let H and K be two subgroups of a finite group G such that|H| > /|G| and

|IK| > /|G|. Then HN K # e.
Proof. Suppose HNK =e.|HNK| =1.

_ HIIK] _
IHK| = = [HIIK] - (by Problem 4)

> JIG1,\/IG] = |G|.
~ |HK| > |G| which is a contradiction
~HNK *e.
Exercises
1. Show that any group of order 17 is cyclic.
2. Show that any infinite group has proper subgroups.

3. Prove that in an infinite cyclic group all the subgroups other than ({e}) are infinite.

3.9. Normal Subgroups and Quotient Groups

Definition. A subgroup H of G is called a normal subgroup of G if aH=Ha for all ae G..
Examples

1. For any group G, {e} and G are normal subgroups.

2. In S;, the subgroup {e,pi,p2} is normal.

3. In S;, the subgroup {e,p;} is not a normal subgroup

Theorem 3.39 Every subgroup of an abelian group is a normal subgroup.
Proof. Let G be an abelian group and let H be a subgroup of G. Let a € G.
We claim that aH = Ha.

Let xe aH. Then x=ah for some he H (since G is abelian)

~ x € Ha. Hence aH < Ha.

Similarly Ha € aH.

~ aH = Ha and hence H is a normal subgroup of G.
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Examples

(1). nZ is a normal subgroup of (Z, +).

(i1) Every subgroup of (Z,) is normal.

(iii) Since any cyclic group is abelian any subgroup of a cyclic group is normal.
Theorem 3.40 Let H be a subgroup of index 2 in a group G. Then H is a normal subgroup of
G.

Proof. If ac H then H=aH=Ha.

If a € H, then aH is a left coset different from H. Hence HN aH=®

Further, since index of HinGis 2, HU aH = G.

Hence aH = G — H.

Similarly, Ha = G — H so that aH = Ha.

Hence H is a normal subgroup of G.

Example. The alternating group A4,, is a subgroup of index 2 in S,,, and hence is a normal
subgroup of S,,.

Theorem 3.41 Let N be a subgroup of G. Then the following are equivalent:
(i) N is a normal subgroup of G.

(i) aN = Na forall a € G.

(i) aNa~* € N forall a € G.

(ivyaNa ! = N foralla € N and a € G.

Proof. (i) = (ii)

Suppose N is a normal subgroup of G.

~aN = Na forall a € G.

~aNa '=Naa ™' =Ne=N

(i1) = (iii) and (iii) = (iv) are obvious.

@iv) = (i).

Suppose that aNa™! = N forallm € N and a € G.

We claim that aN = Na.

Let x € aN. Then

x = an for somen € N.

x = (ana™1)a € Na (since ana™! € N)

~aN €S Na. ...(1)
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Now, let x € Na. Then

x =na forsomen € N.
x=a(a na) €aN ...(2)
From (1) and (2) we get aN = Na.

Hence N is a normal subgroup of G.

Solved Problems

Problem 1 Prove that the intersection of two normal subgroups of a group G is a normal

subgroup of G.

Solution. Let H and K be two normal subgroups of G. Then H N K is a subgroup of G.

Now,leta € Gandx € HN K. Thenx € H and x € K.
Since H and K are normal, axa™! € H and axa™! € K.
~axa ! € HNK).

Hence H N K is a normal subgroup of G.

Problem 2 The centre H of a group G is a normal subgroup of G.
Solution.The centre H of G is given by

H ={a € G:ax = xa for allx € G}.

Now letx € H and a € G. Hence ax = xa.

saxa '=x€H.

Hence H is a normal subgroup of G.

Problem 3 Let H be a subgroup of G. Let a € G. Then aHa ™! is a subgroup of G.

Solution. e = aea™! € aHa™! and hence aHa™! # ¢.
Now letx,y € aHa™?.
Then x = ahya™! and y = ah,a™! where hy, h, € H.
Now,
xy~t = (ahya ") (ah,a™ )™
= (ahya ") (ahz'a™)
= a(h;h;Na ! € aHa™?

~aHa™?! is a subgroup of G.
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Problem 4 Show that if a group G has exactly one subgroup H of given order, then H is a
normal subgroup of G.

Solution. Let the order of H be m.

Let a € G. Then by solved problem 3, aHa ™! is also a subgroup of G.

We claim that|H| = |aHa™!| = m.

Now, consider f: H - aHa™?! defined by f(h) = aha™*.

To prove fis 1-1.

f(hy) = f(hy) = ahya™! = ah,a™ = hy = h,.

Hence fis 1-1.

To prove f'is onto

Letx = aha™! € aHa™.

Then f(h) = x. Thus fis a bijection.

|H| = |aHa | = m.

But H is the only subgroup of G of order m.

= aHa™! = H. Hence aH = Ha.

~ H is a normal subgroup of G.

Problem 5. Show that if H and N are subgroups of a group G and N is normal in G, then
H N N is normal in H. Show by an example that H N N need not be normal in G.
Solution. Letx e HN N anda € H.

We claim that axa™ € H N N.

Now,x € Nanda € H = axa™! € N (since N is a normal subgroup).

Alsox € Handa € H = axa™! € H (since H is a group).

Hence axa™* € HN N.

~ H N N is a normal subgroup of H.

Example. Give an example to shows that H N N need not be normal in G.

Let G = S3. Take N=Gand H = {e, p3}.

Now H N N = H which is not normal in G.

Problem 6. If H is a subgroup of G and N is a normal subgroup of G then HN is a
subgroup of G.

Solution. To prove that HN is a subgroup of G, it is enough if we prove that HN = NH
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Let x € HN. Then x = hn where h € H andn € N.

But hN = Nh (since N is normal).

x € Nh. Hence HN € NH.

Similarly NH € HN.

~ HN = NH. Hence HN is a subgroup of G.

Problem 7. M and N are normal subgroups of a group G such that M N N = {e}. Show
that every element of M commutes with every element of N.

Solution. Leta € M and b € N.

We claim that ab = ba.

Consider the element aba™th~ 1.

Since a~! € M and M is normal, ba™1b~1 € M.

Also a € M, so thataba™'b~! € M.

Again, since b € N and N is normal, aba™! € N.

Also b~! € N, so that aba™ b~ € N.

Thus aba b~ e M NN =e.

~aba b~ = e, so that ab = ba.

Exercises.

1. If A is normal in G and B a subgroup of G such that A € B € G, then prove that A is a
normal subgroup of B.

2. Show that a subgroup of index 3 need not be normal.

Definition. Let G be a group and N be a subgroup of G. Denote by G/N the set of all right
cosets of N in G. Thus G/N={Na: aeG}
Theorem 3.42. A subgroup N of G is normal iff the product of two right cosets of N is
again a right coset of N.
Proof. Suppose N is a normal subgroup of G.
Then NaNb = N(aN)b = N(Na)b (since aN = Na)
= NNb = Nab (since NN = N)
= Nab
Conversely, suppose that the product of any two right cosets of N is again a right coset of

N. Then NaNb is a right coset of N.

Manonmaniam Sundaranar Universiy, Directorate & Continuing Education, Tirunelveli 58



Further ab = (ea)(eb) € NaNb.

Hence NaNb is the right coset containing ab.

~ NaNb = Nab

Now, we prove that N is a normal subgroup of G.

Leta € G andn € N. Then

ana™! = eana™! € NaNa™! = Naa™' = N.

~ana”! € N.

Hence N is a normal subgroup of G.

Theorem 3.43. Let N be a normal subgroup of a group G. Then G /N is a group under the
operation defined byNaNb = Nab.

Proof. By theorem 3.42 the operation given by NaNb = Nab is a well-defined binary
operation in G/N.

Now, let Na, Nb, Nc € G/N.

Then

Na(NbNc) = Na(Nbc) = N(ab)c = (NaNb)Nc.

~ (NaNb)Nc = Na(NbNc).

Hence the binary operation is associative.

Ne =N € G/N and

NaNe = Nae = Na = NeNa.

-~ Ne is the identity element.

Also NaNa™! = Naa™! = Ne = Na"'Na.

=~ Na~1 is the inverse of Na.

Hence G /N is a group.

Definition. Let N be a normal subgroup of G. Then the group G /N is called the quotient
group (or factor group) of G modulo N.

Example 3Z is a normal subgroup of (Z, +).

The quotient group Z/3Z = {3Z + 0,3Z + 1,3Z + 2}.

Hence Z/37Z is a group of order 3.

Exercises
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Sundaranss Universitw

1. Find the order of the following quotient groups:
Ze

(@) 3

(b) Zeo/(5)

2. Compute S,,/A,.

3. Compute V,/(e, a).
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UNIT 111

3.10. Isomorphism
Definition. Let w # 1 be a cubic root of unity. Let ¢ = {1, w, w?}. G is a group under

usual multiplication. The Cayley table for G is given by

1 ) w?
1 1 1) w?
) ) w? 1
w? w? 1 W

@ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Definition. Let G and G’ be two groups. A map f: G — G' is called an isomorphism if
(1) f is a bijection

(i) f(xy) = f()f (¥) forall x,y € G.

Two groups G and G’ are said to be isomorphic if there exists an isomorphism f: G - G'.

If two groups G and G are isomorphic we write G = G'.

Theorem 3.44. [somorphism is an equivalence relation among groups.
Proof. For any group G, i;: G — G is clearly an isomorphism. i(xy) = xy
Hence G = G. Therefore, the relation is reflexive.

Now, let G = G’ and let f: G = G' be an isomorphism. TP: G' = G

Then f is a bijection. f(xy) = f(xy)f(¥)

~ f71:G' - G is also a bijection.

Now, letx’,y’ € G'. TP:- f~1(x'y") =x y
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Let f71(x") =xand f71(y") = y.

Then f(x) =x"and f(y) = y'.

“ fly) =fOfB) =%y

s fTHEY) = xy = OO0

Hence f~1 is an isomorphism.

Thus G’ = G and hence the relation is symmetric.

Now,letG = G and G' = G"'

Then there exist isomorphisms f: G — G’ and g: G' = G"'.
Since f and g are bijections, g o f: G = G'' is also a bijection.
Now, let x,y € G. Then

(g ° Hxy)= glf xy)]
= g[f(x)f (¥)]( since f is an isomorphism)
= g[f(x)]glf (¥)]( since g is an isomorphism)

(geof)xy)=(g° )G HW.

Hence g o f is an isomorphism.

Thus G = G"' and hence the relation is transitive.

-~ Isomorphism is an eguivalence relation among groups.
Examples

1. (Z,+) = (2Z,+).

Consider f:Z = 2Z given by f(x) = 2x.

Clearly f is a bijection. Also

fx+y)=2(x+y)
=2x+2y=f()+ 1)

Hence f is an isomorphism.

2. LetG = {(g 8)| a€ R*}.

G is a group under matrix multiplication.

We claim that G = (R*,-).

Consider f: G — R”* given by f (8 8) =a.
Clearly f is a bijection.

a 0
0 0

b 0

Now, let A = ( 0 0

JandB=(] [)€G.
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Then AB = (aob 8)

~ f(AB) = ab = f(A)f(B).

Hence f is an isomorphism.

3. (R +)=(R*,).

Consider f: R — R*given by f(x) = e*.
Clearly f is a bijection.

Also f(x +y) = e™ =e*e¥ = f(X)f ().
Hence f is an isomorphism.

4. G =R—(-1) is a group under * defined by a * b = a + b + ab. We claim that
G = (R*,).

Consider f: G —» R* given by f(x) = x + 1.
Clearly f is a bijection.

fexy)=f(x+y+xy)
=x+y+xy+1
=x+Dy+1)
=ff»)

Hence f is an isomorphism.

Example. (Z,,,®) is a group.

Let G denote the set of all n™ roots of unity G is a group under usual multiplication.
We claim that (Z,,,P) = G.

Consider f:Z,, = G given by f(m) = w™ where w = cos (2 /n) + isin (2 /n).
Clearly f is a bijection.

Leta,b €Z,.Leta+b=qn+r where0 <r <n.

Thena @ b = r. Hence

f@®b)=w"....... (D)

f(a)f(b) = w0l = Wt = YT = VWY = 1" = w"

From (1) and (2), we get f(a @ b) = f(a)f (b).

Hence f is an isomorphism.
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Exercises

a 0

1. ShowthatG={(O 0

)| ac€ R} is : group under matrix addition and prove that
G=(R+).

2. Show that G = {(—ab Z)| a,b € R ad a? + b? # 0} is a group under matrix mult

plication and G = (C*,-).
3. Let f;: R = R be the function defined b ! f,;(x) = x + a. Then G = (f,/a € R)'

group under composition of functions. Show that ¢ = (R, +).

Theorem 3.45. Let f: G — G' be an isomorphism. Then

(1) f(e) = e’ where e and e’ are the identity elements of G and G' respectively. (i¢). In an
isomorphism identity is mapped onto indentity.

(if) (@) = [f(@)] ™

Proof. (i) To prove that f(e) = e’ it is enough if we prove that a’f(e) = f(e)a’ = a’ for
alla' € G'.

Leta' € G'. Since f: G — G' is a bijection, there exists such that a € G such that f(a) =

!

a'.

~a'f(e)=f(a)f(e) = f(ae) = f(a) = a’.

Similarly f(e)a’ = a'

~ f(e)=¢e'.

(ii) It is enough to prove that f(a)f(a™1) = f(a V) f(a) = €.

Now, f(@)f(a™") = f(aa™) = f(e) = €".

Also, f(a™)f(a) = f(a'a) = f(e) = ¢’

s f@f@ =flaHf(a)=e"

“ [f@]™ = fla™).

Remark. The concept of isomorphism for groups is extremely important. Since two
isomorphic groups G and G' have essentially the same structure, if one group G has an
additional property (for example abelian or cyclic) then the group G’ also has this
additional property. This is seen in the following three theorems.

Theorem 3.46. Let f: G — G’ be an isomorphism. If G is abelian, then G’ is also abelian.

Proof. Let a’, b’ € G'. Then there exist a, b € G such that f(a) = a’ and f(b) = b'.
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Now, a'b’ = f(a)f (b) = f(ab) = f(ba) = f(b)f(a) = b'a’.

Hence G’ is abelian.

Theorem 3.47. Let f: G — G’ be an isomorphism. Let a € G. Then the order of a is equal
to the order of f(a).

(ie) Isomorphism preserves the order of each element in a group.

Proof. Suppose the order of a is n. Then n is the least positive integer such that a™ = e.

Now, [f(@)]" = f(a) ... ... f(a) (f (a) written n times

= f(a™) (since f is an isomorphism)

=f ,(e)

=e
Now, if possible, let m be a positive integer such that 0 < m < nand [f(a)]™ = e'.
Then f(a™) = [f(@)]™ = ¢’
But f(e) = e'. Since f is 1-1 we have a™ = e which contradicts the definition of the
order of a.
~ n is the least positive integer such that [f(a)]" = e'.
=~ The order of f(a) is n.
Theorem 3.48. Let f: G — G’ be an isomorphism. If G is cyclic then G is also cyclic.
Proof. Let a be a generator of the group G. We shall prove that f(a) is a generator of the
group G'.
Let x" € G'. Since f is a bijection, there exists x € G such that f(x) = x'.
Now, since G = (a), x = a™ for some integer n.
Hencex' = f(x) = f(a™) = [f(a)]".
Since x" € G' is arbitrary every element of G is of the form [f(a)]™ so that G’ = (f(a)).
Hence G' is cyclic.
Remark. To-prove that two groups G and G’ are isomorphic/we exhibit a bijection
f:G — G' such that f(xy) = f(x)f(y) forall x,y € G. If two groups G and G' are not
isomorphic, then no such bijection exists. But in general it is not easy to try every possible
bijection and find out whether it has the above property or not except when there is no

bijection. In this case it is obvious that the groups are not isomorphic.
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Examples.

1. (Z,® ) and S; are not isomorphic since Z, contains 4 elements and S; contains 6
elements and therefore there exists no bijection from Z, to Ss.

2. The groups ( Z4,@® ) and S3. Both groups contain 6 elements. We note that Zg is
abelian whereas S is non-abelian. Hence by theorem 3.46 these two groups are not
isomorphic. Thus in this case we conclude that the two groups are not isomorphic by
showing that one group has an algebraic property which the other group does not have.
3. Consider (Z +) and ( Q + ). These two groups are not isomorphic since ( Z, + ) is
cyclic and ( Q, + ) is not cyclic

Problem 1. Show that ( R, ) is not isomorphic to ( R, + ).

Solution. In (R, +) every element other than 0 is of infinite order. But in ( R*,- ) there
exists an element (other than 1 ) of finite order. For example, -1 is of order 2 in ( R’," ).
Hence we cannot find an isomorphism from ( R*,- ) to ( R, 4 ). (by theorem 3.47).
Problem 2. Show that (Z,,@) is not isomorphic to V.

Solution. In Z,, 1 is an element of order 4. By, V, every element other than e is of order 2 .
Hence, two groups are not isomorphic.

This can also be proved by noticing that Z, is cycles and V, is not cyclic.

Problem 3. If G is a group and G’ is a set with a bines operation and there exists a one-one
mapping f from f onto G’ such that f(ab) = f(a)f(b) for all a,b € c then show that G’
is also a group.

Solution. Leta, b,c € G'.

Since f: G — G' is a bijection, there exist a, b, ¢ € G such that
f@=a’f(b)=Db"f(c)=c".

Since G is a group, (ab)c = a(bc).

~ fl(ab)c] = fla(boc)].

~ f(ab)f(c) = f(a)f (bc) (by hypothesis).

~ [f@fdIf () = fF(@If (B)f (©)].

s~ (@'b)c" =ad (b'c).

The binary operation in G' is associative.

Now, let e € G be the identity element.

Leta' € G'. Since f: G — G' is a bijection, then exists a € G such that f(a) = a'.
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Now, ae = ea = a.

- f(ae) = f(ea) = f ().

~ fla)f(e) = f(e)f (a) = f(@).

~a'f(e)=f(e)a' =a'.

=~ f(e) is the identity in G'.

Leta' € G'. Since f:G' = G' is a bijection, the exists a € G such that f(a) = a’.

Now,aa ! =ala=e.

» flaa™) = f(a™'a) = f(e).

s f@f@™® =fla™f (@) = f(e).

»a'f(@™) =faha = f(e).

. f(a?1) is the inverse of @’ in G'.

Hence G' is a group.

Problem 4. Let G be any group. Show that f: G - G given by f(x) = x 1 isan

isomorphism < G is abelian.

Solution. Let f: G —» G given by f(x) = x~! be an isomorphism. We claim that G is

abelian.

Letx,y € G.

Then f(x~1y 1) = f(x"Df(y™1). (since f is an isomorphism).

o (xrly™H) = (x )"y,

ST = )Y

SOYX = XY.

sHence G is abelian.

Conversely, suppose G is abelian.

Clearly f: G - G given by f(x) = x~1 is a bijection.

Now, f(xy) = ((xy)™") =y~ "x7'=x"y ™" = f()f(y)

~ f is an isomorphism.

Exercises

1. Show that any two groups of order 2 are isomorphic.

2.  Show that any two groups of order 3 are isomorphic.

3. Show that any proper subgroup of (Z, +) is isomorphic to ( Z, + ). (Hint: Any proper
subgroup of 77 )
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4. Show that (Q, +) is not isomorphic to (Q*,-).
5. Show that (C,+) is not isomorphic to (C*,-).
6. Let f:G — G' be an isomorphism. Then if H is a subgroup of G, f (H) is a subgroup of

7. Prove that for any positive integer n, (Z/nZ) = Z,,.

Theorem 3.49. Any infinite cyclic group G is isomorphic to ( Z, + ).

Proof. Let G be an infinite cyclic group with generator a. Then G = {a"/n € Z}.
Define f:Z = G by f(n) = a™ -

Since G is infinite, n # m = a™ # a™.

Hence f is 1 — 1. Obviously f is onto.

Now, f(n +m) = a™™ = a"a® = f(n)f (m).

Hence f is an isomorphism.

Corollary. Any two infinite cyclic groups are isomorphic to each other.

Note. Let G and G’ be two infinite cyclic groups. By theorem 3.49, G = (Z, +) and
(Z,+) = G'. Thus G = G’ (since = is an equivalence relation).

Theorem 3.50. Any finite cyclic group of order n is isomorphic to ( Z,,,D ).

Proof. Let G be a cyclic group of order n with generator a. Then G =

Define f:Z, - Gby f(r) =a’.
Clearly f is a bijection.
Now, letr,s €Z,.Letr @s =t . Then r+s=qgn+t,where 0 <t < n.
S f®s)=a® =ab............(1)
Also, f(r)f(s) =a"a’® = a™s = a?*t = q1qt = (a")9at = eat =a' .............(2)
From (1) and (2), we get f(r @ s) = f(r)f(s).
Hence f is an isomorphism.
Corollary. Any two finite cyclic groups of the same order are isomorphic.
Theorem 3.51 (Cayley's theorem)

Any finite group is isomorphic to a group of permutations.
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Proof. We shall prove this theorem in 3 steps. We shall first find a set G’ of permutations.
Then we prove that G’ is a group of permutations and finally we exhibit an isomorphism
¢:G—G'.
Step 1. Let G be a finite group of order n. Let a € G.
Define f,: G = G by f,(x) = ax.
Now, f,is1—1,since fo(x) = f,(y) @ ax =ay =>x =y.
Lety € G. Then f,(a”'y) = a(a™'y) = y). Thus f, is onto.
Thus f, is a bijection.
Since G has n elements, f, is just a permutation on n symbols.
Let G' = {f,/a € G}.
Step 2. We prove G' is a group.
Let f,, fp € G'. Then (f0 fi)(x)= fu(fo(x))=fa(bx)=a(bx)=(ab)x=f,(x)
Hence f o f,, = fau- Hence G' is closed under composition of mappings. f, € G’ is the
identity element.
The inverse of f, in G is f; 1.
Step 3. We prove G = G'.
Define ¢.: G —» G' by ¢p(a) = f,.
¢(a) = ¢(b) = fa = o= fa(x) = f (%)

=>ax =bx =>a=hb.

Hence ¢ is 1 — 1. Obviously ¢ is onto. .
Also ¢(ab) = fap = fa° f = ¢(a) e $(b)
Hence ¢ is an isomorphism.

Example. Consider the group G = {e, a, b} whose multiplication table is given by

e a b
e e a b
a a b e

b b e a

By Cayley's theorem G is isomorphic to the permut. tion group G’ = {f,, f,, f»} were

=g p)i=( oy Jaan=( ¢ o)

e a b e e a
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Definition. An isomorphism of a group G to itself is called an automorphism of G.
Examples.

1. Any group G has atleast one automorphism namely i;.

2. The map f:R* - R* defined by f(a) = a™? is an automorphism.

Clearly f is a bijection.

Also f(ab) = (ab ™)t =bta ' =a bt = f(a)f(b)

More generally if G is abelian, f: G — C defined by f(a) = a™?! is an automorphism.
3. The mapping c given by ¢(z) = Z is an automorphism of the additive group of

complex numbers. Clearly ¢ is a bijection and

Pz +w)=(z+w)
=Z+w
= ¢(2) + p(w)
4. Let G be any group. Let a € G. Then ¢p: G - G defined by ¢, (x) = axa ! isan

automorphism of G.

For, let x,y € G. Then

Pa(x) = $o(¥)= axa™' = aya™*
= x = y( by cancellation law)

o gisl—1.
Also ¢y (a txa) = a(a™xa)a™! = (aa Hx(aa™t) = exe = x.
Hence a™1xa is the pre-image of x under ¢, .

Also

Po(xy)= axya™

= (axa™")(aya™)
= ¢a ()P (¥)

Thus ¢, is an automorphism of G.

Definition. The automorphism ¢,: G = G defined in example 4 is called an inner
automorphism of the group G.

Definition. Let G be a group. The set of all automorphisms of G is denoted by Aut G. The
set of all inner automorphisms of G is denoted by /(G).

Theorem 3.52. For any group G,

(1) Aut G is a group under composition of functions.

(i1) 1(G) is a normal subgroup of AutG.
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Proof. (i) Let f,g € AutG.

~ f and g are isomorphisms of G to itself.

=~ f o g is an isomorphism of G to itself (Theorem 3.44).
fog€AutG.

f € AutG = f~1 € Aut G (Theorem 3.44).

Clearly composition of functions is associative.

Hence Aut G is a group.

(i) Let ¢4, ¢, € I(G). Then

(Pa®p) (X)= Ppa(bxb™")
=a(bxb™a?!
= (ab)x(ab)™?!
= Pap(x)
Hence ¢ ¢y = Pap € 1(G).
¢. is the identity element of /(G) and the inverse of ¢, is Pq_1.
~ 1(@) is a subgroup of Aut G.
We now prove that I(G) is a normal subgroup of Aut (G).

Let o € Aut(G) and ¢, € I(G). Then

(apaa () = aga(a™(x0) = alaa " (¥)a™) = a(@aa " (Dala™)

= a(@)x[a(@)]™ = Ppg)(x) € 1(G).

Therefore adpaa™ = py(q) € 1(G).
Hence I(G) is a normal subgroup of Aut G.
Theorem 3.53. Let G be a cyclic group generated by a. Let f: G = G be a mapping such
that f(xy) = f(x)f(y). Then f is an automorphism of G iff f(a) is a generator of G.
Proof. Let f be an automorphism of G. We shall prove that f(a) is a generator of G.
Case (i) Let G be a finite cyclic group of order n. Then order of a is n. By theorem
3.46f (a) is also an element of order n and hence f(a) is a generator of G.
Case (ii) Let G be infinite. Suppose f(a) is not a generator of G. Let H = (f (a)). Then H
is a proper subgroup of G.
We claim that f(G) = H.
Letx' € f(G). Then x" = f(x) for some x € G.

Now, x = a™ for some n since G = (a).
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x = f(a™) = [f(@]" € H.
£(G) C H.

Now, let x € H. Then x = [f(a)]™ for some n.

x = f(a™). Hence x € f(G).
H < f(G).Hence f(G) = H.

Since H is a proper subgroup of G, f is not onto which is a contradiction. Hence f(a) is a
generator of G.

Conversely let f: G = G be a mapping such that f(xy) = f(x)f(y) and let f(a) be a
generator of G. We shall prove that f is an automorphism.

It is enough if we prove that f is 1 — 1 and onto.

Letx € G. Since f(a) is a generator of G, x = [f(a)]™ for some n.

Clearly f(a™) = [f(a)]™ = x. Thus x has a preimage a™ under f. Hence f is onto.
Now, to prove f is 1 — 1.

Case (i) G is finite.

Since any function from a finite set onto itself is necessarily 1 — 1, f is 1 — 1.

Case (ii) G is infinite.

Letx,y € Gandletx =a",y =a™andn > m.

Now,

f@)=f=f(@a") = f(a™)
= [f(@]" = [f(@]™
= [f(@]"™=e
>n—-m=20

(since f'(a) is an element of finite order)

>n=m
=>a" =a™
>x=y

Hence f is 1 — 1. Thus f is an automorphism.
Note. Let G be a cyclic group generated by a. Then any automorphism f: G — G is
completely determined by the image f(a) of the generator. For example if x € G is any

element then x = a™ for some integer n and hence f(x) = f(a™) = [f(a)]™.

Example. Consider (Z,,@). Here 1 is a generator of this cyclic group.

If £(1) = 3, then
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fO=fADD=fLDf(H)=3B3=2
fA=fCON=fR)Df(1)=2@3=1and
fO=fBOEH=fBDf(H=163=0

Theorem 3.54. The number of automorphisms of a cyclic group of order n is ¢p(n).
Proof. Let G be a cyclic group of order n. Let a € C be a generator. If f: G — G is an
automorphism then f is completely determined by specifying the image of a. The only
possible images of a are any one of the generators of G. Hence the number of
automorphisms is equal to the number of generators of G. But the number of generators of
a cyclic group of order n is ¢(n). (by corollary 3 of Theorem 3.28). Hence the number of

automorphisms of a cyclic group of order n is ¢(n).

Solved problems

Problem 1. Construct the group of automorphisms of (Z,,@®).

Solution. 1 and 3 are the only 2 generators of Z,. Hence there are only 2 automorphisms of
Z4, say f and g. They are given by f(1) = 1 and g(1) = 3.

Hence Aut G = {f, g} = Z,.

Problem 2. Construct the group of automorphisms of ( Z, + ).

Solution. 1 and -1 are the only 2 generators of Z . Hence there are only 2 automorphisms
of Z say f and g. They are given by f(1) = 1 and g(1) = —1. f(1) = 1 gives the identity
automorphism. g(1) = —1 determines the automorphism given by g(x) = —x.

Hence AwtZ = {f,g} = Z,.

Problem 3. Let G be a finite abelian group of order n and let m be a positive integer
relatively prime n. Then f: G — G defined by f(x) = x™ is an automorphism of G.
Solution. Since m and n are relatively prime, there exist integers u and v such that
mu+nv = 1.

Now, let x € G.

Then x = x™MUHNY = MUY = xyMlhg = MU

Hence x = x™*.

Now,
f)=f)=x"=y™
= xMu = ymu

>x=Yy
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Hence fis 1 — 1.
Also f(x*) = x™* = x.
=~ Every element x has pre-image x* under f.
Hence f is onto.
Also f(xy)=(xy)"=x"y"={(x)f(y)
Hence f is an isomorphism.
Problem 4. Show that Aut Zg = V,.
Solution. The generators of Zg are 1,3,5,7. The four different automorphisms of Zg are
fu fas f3, fa given by f1(1) = 1, f2,(1) = 35 f3(1) = 5; fo(1) = 7.
We shall now compute f, o f5.
(fz e f3)(1) = f(f3(1) = f>(5)
=L1O1D1D1D1)
=L O LMD LMD Q) D f(1

=30303D3D3
=7=f1)

Thus f, © f3 = fa.
Similarly we can find f; o f] ;1,j = 1,2,3,4. The Cayley table of Aut Zg is

° fi f2 f3 fa

f f f2 f3 fa
f2 f2 f fa f3
f3 f3 fa f f2
fa fa f3 f2 f

Clearly Aut Zg = V,.

Exercises

1. Compute the group of automorphisms of (Z,,,) and show that Aut Z;, = Aut Zg.
2. Show that in a group G every inner automorphism is identity iff G is abelian.

3. Prove that a subgroup H of G is a normal subgroup iff ¢p,(H) = H for every inner
automorphism ¢y.

4. Represent Z, and V, as groups of permutations.
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3.11. Homomorphisms

Example. Let n be any given positive integer.

Letx €Zandx = gn+r,where 0 <r <n.

We define f(x) =r.

f is a mapping from (Z, +) to (Z,,,D).

We claim that f(a + b) = f(a) @ f(b) forall a,b € Z.
Leta=qn+1r,0<r <nsothat f(a) =1

and b = qg,n+1,,0 <r, <nsothat f(a) =r,.

Letr; +1, =q3n+13,0 <r; <nsothatr, @ r, =13.
~atb=(q+q+qsn+rs.

s~ fla+b)=r;.

Also f(a) ® f(b) =1, D1, =13.

~ fla+b) =f(a) ® f(b).

Note that f is not an isomorphism since f is not 1 — 1.

Definition. A map f from a group G into a group G’ is called a homomorphism if f(ab) =
f(a)f(b) foralla,b € G.

Obviously, every isomorphism is a homorphism and a bijective homomorphism is an
isomorphism.

Examples

1. f:(Z,+) - (Z,+) defined by f(x) = 2x is a homomorphism.

For, f(x +y) =2(x +y) =2x+ 2y = f(x) + f(¥).

Note that f is 1 — 1.

2. f:(R%:) - (R*,) defined by f(x) = |x| is a homomorphism.

For, f(xy) = |xy| = |x|ly| = fFCOf ).

This homorphism is onto.

3. f:G - G' defined by f(a) = e’, where e’ is the identity in G’ is a trivial
homomorphism.

For, f(ab) = e’ =e'e’ = f(a)f(b).

Manonmaniam Sundaranar Universiy, Directorate & Continuing Education, Tirunelveli 75



4. f:(Z,+) - (C*,) given by f(n) = i™ is a homomorphism.

For, f(m +n) = i™™ = {"i™ = f(n)f(m).

Note that f is neither 1 — 1 nor onto.

5. f:(RxXR,+) - (R +) given by f(x,y) = x is a homomorphism.

6. Let G be a group and N a normal subgroup of G.f: G — G /N given by f(a) = Na is
a homomorphism.

For, f(ab) = Nab = NaNb = f(a)f (b). f is called the canonical homomorphism from
G to G/N. Note that f is onto.

Definition. Let f: G — G' be a homomorphism.

(1) If f is onto, then it is called an epimorphism.

(i) If f is 1 — 1, then it is called a monomorphism.

Note. If f: G — G' is an epimorphism then G’ is called a homomorphic image of G.
A homomorphism of a group to itself is called an endomorphism.

Theorem 3.55. Let f: G = G’ be a homomorphism. Then

(i) fe)=¢".

(ii) f@™ = [f (@]

(iii) If H is a subgroup of G then f(H) is a subgroup of G'.

(iv) If H is normal in G, then f (H) is normal in f(G).

(v) If H' is a subgroup of G’, then f~1(H") is a subgroup of G.

(vi) If H' is normal in f(G) then f~*(H') is normal in G.

Proof.

(1) Leta €G.

Then f(a) = f(ae) = f(a)f(e).

Hence f(e) = e'.

(i) f(@f@ D =f(e)=e¢"

Hence f(a™1) = [f(a)]7 .

(ii1) Let H be a subgroup of G.

Since H is non-empty, f (H) is also no. empty.

Now, let x,y € f(H).

Then x = f(a) andy = f(b) where a,b € H.
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~axy~i= f@If ()]
=f@f®™) = f(ab™.

Now, since H is a subgroup of G,ab™! € H.

~ xy™t = f(ab™) € f(H).

~ f(H) is a subgroup of G'.

(iv) Let H be normal in G. Let x € f(H) and y € f(G).
We claim that yxy~! € f(H).

Now, x = f(a) andy = f(b) wherea € Hand b € G.
Since H is normal in G, bab™! € H.

~ f(bab™) € f(H).

~ fMf@fB™Y) € fF(H).

~ yxy~ 1 € f(H). Hence f(H) is normal in f(G).

(v) Since f(e) = e’ € H';e € f1(H') and hence f~1(H") # ®.
Now, leta, b € f~1(H").

Then f(a), f(b) € H'.

F@IFB)] € H’

flab™Y) e H'

(ie),ab™t € f~1(H").

Hence f~1(H") is a subgroup of G.

(vi)Letx € f~1(H') and a € G.

Then f(x) € H and f(a) € f(G).

Since H' is normal in f(G),f (a)f (x)[f(a)]"* € H'.

o flaxa ) e H'.

Hence axa™! € f~1(H").

Thus f~1(H') is normal in G.

Examples

1. Consider the homomorphism f: (Z, +) — (Z,,@®) which is given in the beginning of
this section.

LetK ={x/x € Z, f(x) = 0}.

Clearly K = nZ which is a normal subgroup of Z.
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2. Consider the homomorphism

f:(R*-) = (R*,") which is given by f(x) = |x|.

LetK = {x/x €R", f(x) = 1}.

Clearly K = {1, —1} which is a normal subgroup of (R*,:).

Definition. Let f: G —» G' be a homomorphism. Let K= {x/x € G, f(x) =¢'} . Then K is
called the kernel of f and is denoted by ker f.

Theorem 3.56. Let f: G = G' be a homomorphism. Then the kernel K of f is a normal
subgroup of G.

Proof. Since f(e)=¢',ee€ K and hence K#d .

Now, let x,y e K. Then f(x)=¢'=1(y) .
fly™) = fCOfG™) = fAFOWI™ =e'(eH™ = e

Thus xy~! € K . Hence K is a subgroup of G .
Now, let xeK and aeG.
Then

flaxa™) = f(@f()f (@™ = f(@e'[f@] ™ = f@If(@] ™ =¢".
Therefore axa™ € K .Hence K is a normal subgroup of G .
Theorem 3.57. (Fundamental theorem of homomorphism)
Let f: G = G' be an epimorphism. Let K be the kernel of f. Then G/K = G'.
Proof. Define ¢: G/K = G' by ¢ (Ka) = f(a).
Step (i) ¢ is well defined.
Let Kb = Ka. Then b € Ka.
Hence b = ka where k € K.
Now, f(b) = f(ka) = f(k)f(a)= e'f(a) = f(a).
Therefore ¢ (Kb) = f(b) = f(a) = ¢ (Ka).
Hence ¢ (Ka) = ¢ (Kb).
Step (ii) ¢ is 1-1.
For ¢ (Ka) = ¢ (Kb) = f(a) = f(ib)= f(a)[f(b)]"! = e'= f(ab'})=¢".= ab” e K.
—=a ¢ Kb= Ka =Kb.
Step (iii) ¢ is onto.

Let a' € G'. Since f is onto, there exists a € G such that f(a) =a'.
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Hence ¢ (Ka) =f(a)=a".
Step (iv) ¢ is a homomorphism.
¢ (KaKb) = ¢ (Kab) = f(ab) = f(a)f(b)= ¢ (Ka) ¢ (Kb).
Thus ¢ is an isomorphism from G/K onto G'.
Therefore G/K = G'.
Solved problems
Problem 1. Let f: G — G' be a homomorphism. Then f is 1 — 1 iffker f = e.
Solution. Obviously f is 1 — 1 = kerf = {e}.
Conversely, let kerf = {e}.
We prove fis 1 — 1.
f@) =fO)= O] =¢€

= fly™) =e¢

=>xy le kerf

s>xyl=e.
>x=y.

Hence fis1 — 1.
Problem 2. Let G be any group and H be the centre of G. Then G/H = I(G), the group of
inner automorphisms of G.
Solution. Consider f: G — I(G) defined by f(a) = ¢,.
Then f(ab) = ¢ap = Pa ° ¢» = f(@)f (b).
Hence f is a homomorphism.
Clearly f'is onto.
we claim that kerf = H.
a€kerf © f(a) = . © Py = o © Po(x) = xforallx € G
S axa ! =xforallx € G
& ax =xaforallx € G
S a€H.
Hence kerf = H.
=~ By the fundamental theorem of homomorphism G/H = I(G).
Problem 3. Show that R*/{1,—1} = R™.
Solution. Consider f: R* - R*defined by f(x) = |x|.
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Clearly f is an epimorphism and kerf = {1, —1}.

Hence by the fundamental theorem of homomorphism R*/{1, -1} = R*.
Problem 4. Any homomorphic image of a cyclic group is cyclic.

Solution. Let G be a cyclic group and f; G = G' be an epimorphism. Let a be a generator
of G. Then f(a) is a generator of G'. (by theorem 3.48).

Hence G' is cyclic.

Problem 5. Show that the map f: (C, +) — (R, +) defined by f(x + iy) = y is an
epimorphism and kerf = R. Deduce that C/R = R.

Solution. Let z; = x; + iy; and z, = x, + iy,.

Then z; + z, = (1 + x3) + i(y; + y2).

S fzi+z) =y +y, = f(z0) + f(2).

Hence f is a homomorphism. Clearly f is onto.

Now, kerf = {x +iy/f(x +iy) = 0}=={x + iy/y = 0}=R.

By the fundamental theorem of homomorphism C/R = R.

Exercises
1. Determine which of the following maps are homomorphism. If it is a homomorphism,
find the kernel.

@) f:(Z+) - (1,—1) given by f(n) = {1 ifnis even
—1 ifnisodd
1 ifx>0
b) f:R* - R* given b x) =
(b) f given by f(x) {_1 Fr<0

©) f:(RxR,+) = (R,+) givenby f(x,y) = y.
d) f:(Z,+) - (R*,-) given by f(x) = 3*.
1  ifpis an even permutation

() f:Sn = (1,—1) given byf(p) = {

—1 if p is an odd permutation.
(f) f:R - C given by f(x) = e™*.

(g) f: (Z,+) - (Z,+) given by f(n) = 2n.

(h) f:R* = R" given by f(x) = —x.

(1) f:Z¢ = Z, given by f(x) = remainder of x when x is divided by 2 .
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() f:C* - R given by f(2) = |z|.
&) f:(R,+) = (R, +) given by f(x) = x + 2.

2. Determine which of the following statements are true and which are false.

(a) Any isomorphism is a homomorphism.

(b) Any homomorphism is an isomorphism.

(c) An infinite group cannot be homomorphic to a finite group.
(d) Homomorphism pri res the order of an element.

(e) Any homomorphism f is a monomorphism iff kerf is {e}.
Answers.

1. (a) Yes. kerf = 2Z.

(b) Yes. kerf = R™.

(c) Yes. kerf = R x {0}.

(d) Yes. kerf = {0}.

(e) Yes. kerf = A,,.

(f) No

(g) Yes. ker f = {0}.

(h) No

(1) Yes. ker f = {0,2,4}.

(j) Yes. ker f ={z/z € Cand |z| = 1}.

(k) No.

2. TM®F(@EF @F (e)T.
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UNIT IV

Rings

4.1. Definition and examples

Definition. A nonempty set R together with two binary operations denoted by " + " and "."
and called addition and multiplication which satisfy the following axioms is called a ring.
(1) (R, +) is an abelian group.

(i1) ". " is an associative binary operation on R.
(ii)a-(b+c)=a-b+a-cand(a+b)-c=a-c+b-cforalla,b,c, €R.
Notation. The unique identity of the additive group ( R, + ) is denoted by 0 and is called
the zero element of the ring and the unique additive inverse of a is denoted by —a.
Examples

1. (Z+,)(Q+,); (R +,);(C,+,.) are all rings.

2. (2Z,+,)isaring.

3. LetR={a+bv2/a,b€l)

Clearly R is an abelian group under usual addition.

Leta + bV2 and ¢ + dV2 € R. Then
(a + bV2)(c + dV2) = (ac + 2bd) + (bc + ad)V2 € R

Since the two binary operations are the usual addition and multiplication, the distributive
laws and the associative law hold.

Thus R is a ring with usual addition and multiplication.

4. LetR ={a+ib/a,b € Z}. Then R is a ring under usual addition and multiplication.
This ring is called the ring of Gaussian integers. In general, any subset of complex
numbers which is a group under addition and is closed for multiplication is a ring.

5. {0} with binary operations '+ "'and ' - ' defined as 0 + 0 = 0 and 0.0 = O is a ring.
This is called the null ring.

6. In R X R we define (a,b) + (c,d) = (a+c,b + d) and (a, b) - (c,d) = (ac, bd).
Here (R X R, + ) is an abelian group. The identity is (0,0) and the inverse of (a, b) is
(—a,—Db).
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(a,b)[(c,d) + (e,D)]= (a,b)(c +e,d + f)
= (ac + ae, bd + bf)
= (ac,bd) + (ae, bf)
= (a,b)(¢,d) + (a,b)(e, f)
Similarly, [(a, b) + (c,d)](e, f) = (a,b)(e, f) + (c,d)(e, f).
Hence (R X R, +,- ) is a ring.
7. Let (R, +) be any abelian group with identity 0.
We define multiplication in R by ab = 0 for all a, b € R. Clearly a(bc) = 0 = (ab)c so
that multiplication is associative.
Alsoa(b+c)=0=ab +acand (a + b)c =0 = ac + bc.
Hence R is a ring under these operations. This ring is called the zero ring.
This example shows that any abelian group with identity 0 can be made into a ring by
defining ab = 0.
8. (Z,,,,©) is a ring, for, we know that (Z,,,P) is an abelian group and © is an
associative binary operation.
We now prove the distributive laws.
Leta,b,c € Z,.
Then b @ c = (b + ¢)(modn).
Hencea © (b @ ¢) = a(b + c¢)(modn).
Alsoa O b = ab(mod n) and a © ¢ = ac(mod n) so that
(a®b) B (a ©b) =(ab + ac)(mod n).
Sinceca®@ bDc)and(aOb) D (aOc)eEZ,,wehavea O (b D c)=(aOb) D
(a ©o).
Similarly (a @ b) Oc=((aOc)P (b O c).
Hence (Z,,®,0) is a ring.
9. (#(S),A,N) is a ring. We know that (§(S5), A) is an abelian group (refer example 12 of
section 3.1).
Also N is an associative binary operation on £(S).
It can easily be verified that A N (BAC) = (AN B)A(AN C) and
(AAB)NC =(ANnC)A(BNC).
Hence (§(S), A,N) is a ring.

10. M, (R) under matrix addition and multiplication is a ring.
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11. Let R be the set of all real functions. We define addition and multiplication by
(f +9x = f(x) + g(x) and

(fg)(x) = f(x)g(x).

Then R is a ring.

Clearly addition of functions is associative and commutative,

The constant function 0 defined by 0(x) = 0 is the zero element of R and —f is the
additive inverse of f.

Hence R is an abelian group.

The associativity of multiplication and the distributive laws are consequences of the
corresponding properties in R. Hence R is ring.

Example. Let A be any abelian group. Let Hom (A) be the set of all endomorphisms of A.
Let f, g € Hom(A). We define

f+gby(f+9)(x)=f(x)+g(x)and fg = f o g. Then Hom (A) is a ring.
Proof. Let f,g € Hom(A4).

Then (f + g)(x +y)=f(x +y) + g(x +¥)
=f)+f)+gx)+g90))
=fx)+g)+f¥)+90»)
=+ +( +9O).
Hence f + g € Hom(4).
Obviously + is associative.
Since A is an abelian group f + g =g + f.
If 0 is the identity element of the group A then the homomorphism 0 defined by 0(a) = 0
for all a € A is the zero element of Hom(4).
Now, let f € Hom(A). The function —f defined by (—f)(x) = —[f(x)] is also a

homomorphism, since

HNE+y)=—[f(x +y)]
==[f(x)+f)]
=E=HE+EHO)
Clearly f + (—f) = 0 and hence —f is the additive inverse of f.

Thus Hom (A) is an abelian group.
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Now (f e g)(x +y)= flg(x + ¥)]
= flgx) + 9]
= flg)]+ fla)]
=(feg)+ ()W)
Hence f o g € Hom(A).
Similarly (f + g)ech=foh+goh.

Thus Hom (A4) is a ring.

Example. The set R of all matrices of the form ( a Z) where a, b € R is a ring under

matrix addition and matrix multiplication.

Proof. Let A = ( a Z) and B = ( ¢ d) € R.

—b —d ¢
Then
d
ave=(4 )+ (b dc)
a+ +
:( b+Cd) a+c)ER'
as=(° (5, 9

_( ac — bd ad+bc) R
—(ad +ac) ac—bd

Clearly matrix addition is commutative and (0 0) € R is the zero element.

0 0

(_Z :2) is the inverse of the matrix (_Z Z )

Further matrix multiplication is associative and the distributive laws are valid for 2 X 2
matrices.

Hence R is a ring.

Exercises

1. Prove that the set of all real numbers of the form a + bv/3 where a, b € Q under usual
addition and multiplication is a ring.

2. Determine which of the following statements are true and which are false.

(a) The set of all even integers is a ring under usual addition and multiplication

(b) The set of all odd integers is a ring under usual addition and multiplication.

(c) In any ring addition is commutative

(d) The non-zero elements of a ring form a group under multiplication.
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Answers. 2.(a) T(b) F(c) T(d) F

4.2. Elementary properties of rings

Theorem 4.1. Let R be aring and a,b € R. Then
(i)0a=a0=0 (i) a(—=b) = (—a)b = —(ab)
(iii) (—a)(=b) = ab (iv) a(b——c) = ab — ac.
Proof. (i) a0 = a(0 + 0) = a0 + a0.

~ a0 = 0. (by cancellation law in (R, +) )

Similarly 0a = 0.

(i) a(—=b) + ab = a(—=b + b) = a0 = 0.

~ a(—=b) = —(ab).

Similarly, (—a)b = —(ab).

(i) By (ii), (=a)(=b) = —[a(=b)] = —(—ab) = ab.
(iv)a(b—c)=al[b+ (—=c)] = ab + a(—c) = ab — ac.

Solved problems

Problem 1. If R is a ring such that a? = a for all a € R, prove that

(i)a+a=0
(i)a+b=0=>a=0b
(iii) ab = ba

Proof.

i) a+a = (a+a)(a+a) = a(a+a) +a(a+a) = aa+aa+aa+aa
= (a+a)+(a+a) (since a® = a)
Hencea +a = 0.
(i) Leta+b=0.By(i)a+a=0.
~a+b=a+asothata = b.
iii) a +b = (a+b)(a+b) = a(a+b) +b(a+b) = aa+ab+ba+bb
= a+ab+ba+b
Hence ab + ba = 0, so that by ii) ab=ba

Note. A ring R is called a Boolean ring if a? = a for all a € R.
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For example ( §(S),A,N ) is a Boolean ring.

Problem 2. Complete the Cayley table for the ring R = {a, b, c, d}

+ a b c d . a b c d
a a b c d a a a a a
b b a d c b a b

c c d a b c a A
d d c b a d a b c

Solution. First, we shall compute cb.

cb= (b +d)b (from addition table)

= bb + db
=b+b (from multiplication table)
=a (from addition table)

Now,cc=c(b+d)=cb+cd=a+a=a.
bc=(5+d)c=cc+dc=a+c=c.

bd =b(b+c)=bb+bc=b+c=d.
dd=(b+c)d=bd+cd=d+a=d.

Hence the completed table for multiplication is

a b c d

Exercises
1. Given any positive integer n show that there exists a ring with n elements.
2. Prove by induction that a(b, + b, + -+ b,) = ab, + ab, + ---+ ab,,.

4.4. Types of rings
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Definition. A ring R is said to be commutative if ab = ba for all a,b € R.

Examples

1. The familiar rings Z, Q, R are all commutative. The following are examples of
noncommutative rings.
2. Let F denote the set of all functions from R to R. We define (f + g)(x) = f(x) +
g(x)and f-g = f og. Then (F,+, ) is noncommutative ring.

3. The ring of quaternions given in example 13 of 4.1 is a non-commutative ring since
ij =k and ji = —k.
4. M,(R) is a non-commutative ring.
Exercises Determine which of the rings given in section 4.1 are commutative. section 4.1
are commutative.
Answers 1,2,3,4,5,6,7,8,9,11,14 are commutative rings.
Definition. Let R be a ring. We say that R is a ring with identity if there exists 1 belongs to
R such that al = 1a = a for all a belongs to R
Examples

1. The familiar rings Z, Q, R are all rings with identity.
2. (nZ,+,) whenn > 1 is a ring which has no identity.
3. M, (R) is a ring with identity.
Exercises Determine which of the rings given in section 4.1 are rings with identity.
Answers. 1,3,4,6,8,9,10,11,12,13 and 14 are rings with identity.
Note. Consider the null ring {0}. In this case 0 is both additive identity and multiplicative
identity. This is the only case where 0 can act as the multiplicative identity, for if 0 is the
multiplicative identity in a ring R, then Oa = a for all a € R. But in any ring Oa = 0.
Hence a = 0, so that R = {0}. In what follows we will exclude this trivial case when
speaking of the multiplicative identity. Hence whenever we speak of a multiplicative
identity in a ring, we assume that the multiplicative identity is not 0 .
Theorem 4.2. In a ring with identity the identity element is unique.
Proof. Let 1, 1’ be multiplicative identities.
Then 1-1" = 1 (considering 1" as identity)
and 1-1" = 1’ (considering 1 as identity)

Manonmaniam Sundaranar Universiy, Directorate & Continuing Education, Tirunelveli 88



~ 1 = 1". Hence the identity element is unique.

Definition. Let R be a ring with identity. An element u € R is called a unit in R if it has a
multiplicative inverse in R. The multiplicative inverse of u is denoted by u™?.
Examples.

1. In (Z, +,-),1 and -1 are units.

2. In M;(R), all the non-singular matrices are units.

3. In Q,R and C every non-zero element is a unit.

Theorem 4.3. Let R be a ring with identity. The set of all units in R is a group under
multiplication.
Proof. Let U denote the set of all units in R. Clearly 1 € U. Leta,b € U.
Hence a™ 1, b~ 1 exists in R.
Now (ab)(b™'a™) =a(bb™Va ' =ala ' =aa™ ! =1.
Similarly (b~ta"1)(ab) = 1.
Hence ab € U.
Also (@)™ ' =aandhenceae U= at e U.
Hence U is a group under multiplication.
Exercises. Find all the units in the rings given in section 4.1
Answers.

1. InZ,1 and -1 are units; Q*, R* and C* are the units in Q, R and C respectively.
Nil

1 and -1

1,i,—1,—i.
Nil
R* x R".
Nil.
{a/a € Z, and (a,n) = 1}.

S.

Y ©® Ny kv

—_
S

. All non-singular matrices.

—
—_

. All bijections.

—
|\

. All automorphisms
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13. Q"
14. R*.

Definition. Let R be a ring with identity element. R is called a skew field or a division ring
if every non-zero element in R is a unit.

(i.e) For every non-zero element a € R, there exists a multiplicative inverse a~! € R such
that aa™! = a~'a = 1. Thus, in a skew field the non-zero elements form a group under
multiplication.

Definition. A commutative skew field is called a field.

In other words a field is a system ( F, +,- ) satisfying the following conditions.

(1) (F,+) is an abelian group.

(ii) (F — [0],-) is an abelian group.

(iii)a-(b+c)=a-b+a-cforalla,b,c €EF.

Examples

1. Q,Rand C are fields under usual addition and multiplication.

2. Let p be a prime. Then (Z,,,GB,O) is field.

Proof. (Z,,0,0 ) is a ring (by example 8 of 4.1)

Also since p is prime (Zp - {0},0) is an abelian group. (refer example 23 of 3.1).

Hence (Z,®,0) is a field.

3. Let M be the set of all matrices of the form (—aE Z) where a, b, € C. Then M is a

skew field under matrix addition and matrix multiplication.

Proof. Let A,B € M.

LetA = (_g Z) and B = (—Ccf C;) Then

ver=(31h 01

_( a+c b+d>€M
" \-(b+d) a+c '

Hence M is closed under matrix addition, | Obviously matrix addition is associative and

commutative.

0 0.
( 0 0) is the zero element of M.
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(_Ea :Z) is the additive inverse of (—aE Z)

Hence M is an abelian group und addition.

Now,
a= (5 o) o)
:( C_lC—bCZ c}d+bc‘>
—bc—ad —bd+ac
which is of the form (_ > 7).

Hence M is closed under matrix multipletioni.

Further matrix multiplication is associnic and ((1) (1)) € M is the multiplicare identity.

Now, let A = (—aE Z) be a non-zen matrix in M.

Then either a # 0 or b # 0 so that either |a| > 0 or |b| > 0.

Hence |A| = aa@ + bb = |a|?> + |b|> > 0

Thus A is a non-singular matrix and hence br an inverse and A~ € M. Thus M is a skew
field. Also since matrix multiplication is ad commutative, M is not a field.

4. Let Q be the ring of quarternions given is example 13 of section 4.1. Q is a skew field
but not a field.

Proof. We have proved that (Q, +,-) is : ring.

1 =1+ 0i + 0j + Ok is the identity elemest Let x = ay + a4i + a,j + azk be a non-zero
element in Q.

Then not all of ay, a4, a,, az are zero.

Leta = a3 + a? + a5 +ab. Clearlya # 0

Lety = (ao/a) — (a1/a)i — (az/a)j — (az/a)k.

Now, y € Q and xy = yx = 1. (verify).

Thus Q is a skew field.

In Q, multiplication is not commutative since ij = k and ji = —k. Hence Q is not a field.
5. (Z;+.) is a commutative ring with identity but not a field since 1 and -1 are the only
non-zero elements which have inverses.

Theorem 4.4. In a skew field R,

(i) ax = ay,a # 0 = x = y (cancellation laws in ring)
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(i)xa=ya,a+0=>x=y

(ii)ax =0 a=0o0rx =0.

Proof.

(i) Letax = ay and a # 0.

Since R is a skew field there exists a™! € R such that aa™! = a™la = 1.
Hence ax = ay = a™*(ax) = a (ay) > x = y.

(ii) can be proved similarly.

(iii) If a = 0 or x = 0, then clearly ax = 0.

Conversely let ax = 0 and a # 0.

~ ax = a0.
~ x = 0 by ().

Note. Thus, in a skew field the product of two nonzero elements is again a non-zero
element. However, this is not true in an arbitrary ring.

Example

1. Consider the ring (R X R, +,- ) where ' +'and °. © are defined by

(a,b) + (c,d)=(a+c,b+d)and
(a,b) - (¢c,d)= (ac, bd).

R X R is a commutative ring with identity. Here (1,0)(0,1) = (0,0).

2. The product of two non-zero matrices can be equal to the zero matrix. For example.
1 00 0y_(0 O
(0 0) (1 0) - (0 0)'

Definition. Let R be a ring. A non-zero element a € R is said to be a zero-divisor if there
exists a non-zero element b € R such that ab = 0 or ba = 0.

Examples

1. Inthering R xR, (1,0) and ( 0,1 ) are zero divisors, since (1,0)(0,1) = (0,0). In fact,

all the elements of the form (a, 0) and (0, a). where a # 0 are zero divisors.

. . 1 0y (0 O . .
2. In the ring of matrices ( 0 0), ( 1 1) are zero-divisors, since

1 00 0y _(0 O
(0 O) (1 1) - (0 O)'
3. Inthe ring Z,,, 3 is a zero-divisor, since 3 © 4 = 0. Also 2,4,6 are zero-divisors.

4. In the ring of integers, no element is a zero divisor.
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5. No skew field has any zero-divisor.

Theorem 4.5. A ring R has no zero-divisors iff cancellation law is valid in R.

Proof. Let R be a ring without zero-divisors.

Letax =ay anda # 0.

~ ax —ay =0.Hencea(x —y) =0and a # 0.

~ x —y = 0 (since R has no zero-divisors).

~ x = y. Thus, cancellation laws is valid in R.

Conversely let the cancellation law be valid in R.

Letab =0and a # 0. Then ab = 0 = a0.

Hence by cancellation law b = 0.

Hence R has no zero-divisors.

Theorem 4.6. Any unit in R cannot be a zero-divisor.

Proof. Let a € R be a unit.

Thenab =0 = a *(ab)=0= b =0.

Similarly ba = 0= b = 0.

Hence a cannot be a zero-divisor.

Note. The converse of the above result is not true. (ie.) a is not a zero-divisor does not
imply a is a unit.

For example, in Z, 2 is not a zero-divisor and 2 is not a unit.

Definition. A commutative ring with identity having no zero-divisors is called in integral
domain.

Thus, in an integral domain ab = 0 = eithera = 0 or b = 0.

Or equivalentlyab =0anda #0=>b =0;ora#0andb # 0 = ab # 0.
Examples

1. Zis an integral domain.

2. nZ where n > 1 is not an integral domain since the ring nZ does not have an identity.
3. Z,, is not an integral domain since 4 is a zerodivisor in Z;,.

4. Z, is an integral domain.

Theorem 4.7.Z,, is an integral domain iff n is prime.

Proof. Let Z,, be an integral domain.

We claim that n is prime. Suppose n is not prime.
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Thenn = pg where Il <p <nandl < q <n.
Clearlyp © g = 0.
Hence p and q are zero-divisors.
~ Z, is not an integral domain which is a contradiction. Hence n is prime.
Conversely, suppose n is prime. Let a, b € Z,,.
Thena © b =0 = ab = gn where q € Z,,.
=>n|ab
= n| qorn| b (sincen is prime)
=>a=0o0rb=0.
~ Z, has no zero-divisors.
Also Z,, is a commutative ring with identity.
Hence Z,, is an integral domain.
Theorem 4.8. Any field F is an integral domain.
Proof. It is enough if we prove that F has no zerodivisors.
Leta,b € F,ab =0and a # 0.
Since F is a field a™ ! exists.
Now,ab=0=a"(ab) =0
=b=0.
~ F has no zero-divisors.
Hence F is an integral domain.
Note. The converse of the above theorem is not true
(ie) An integral domain need not be a field.
For example, Z is an integral domain but not a field.
Theorem 4.9. Let R be a commutative ring with identity 1 . Then R is an integral domain
iff the set of non-zero elements in R is closed under multiplication.
Proof. Let R be an integral domain.
Leta,b € R — {0}.
Since R has no zero-divisors ab # 0 so that R — |0] is closed under multiplication.
Conversely, suppose R — {0} is closed under multiplication. Then the product of any two
non-zero elements is a non-zero element. Hence R has no zero-divisors so that R is an

integral domain.
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Theorem 4.10. Let R be a commutative ring with identity. Then R is an integral domain iff
cancellation law is valid in R.

Proof. The result is an immediate consequence of Theorem 4.5.

Theorem 4.11. Any finite integral domain is a field.

Proof. Let R be a finite integral domain. We need only to prove that every non-zero
element in R has a multiplicative inverse.

Leta € Randa # 0.

LetR = (0,1,a4,ay, ..., ..., Ay).

Consider {al, aa,, aa,, ... ... ,ady}.

By Theorem 4.9 all these elements are non-zero and all these elements are distinct by
Theorem 4.10.

Hence aa; = 1 for some a; € R

since R is commutative, aa; = a;a = 1 so that a=a™'. Hence R is a field.

Remark. The above result is not true for an infinite integral domain. For example consider
the ring of integers. It is an integral domain but not a field.

Theorem 4.12.Z,, is a field iff n is prime.

Proof. By theorem 4.7, Z,, is an integral domain iff n is prime.

Further Z,, is finite. Hence the result follows from Theorem 4.11.

Theorem 4.13. A finite commutative ring R without zero-divisors is a field.

Proof. If we prove that R has an identity element then R becomes an integral domain and

hence by Theorem 4.11 it is a field. So we prove the existence of identity.

Leta € Randa # 0.

Then the elements aa4, aa,, ... ... , Ady, are distinct and non-zero.
~ aa; = a for some i.

Since R is commutative we have aa; = a;a = a.

We now prove that a; is the identity element of R.

Letb € R. Then b = aa; for some j.

~aib = ai(aaj) = (q;a)a; = aa; = b.

Thus Cll'b = bai =b.
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Since b € R is arbitrary, a; is the identity of R.

Hence the theorem.

Solved problems

Problem 1. Prove that the set F of all real numbers of the form a + bv/2 where a, b € Qis
a field under the usual addition and multiplication of real numbers.

Solution. Obviously, (F, +) is a abelian group with 0 as the zero element.

Now, let a + b2 and ¢ + dv2 € F. Then (a + bv2)(c + d/2) = (ac + 2bd) + (ad +
bc)V2 € F.

Since the two binary operations are the usual addition and multiplication of real numbers,
multiplication is associative and commutative and the two distributive laws are true.

1 = 1+ 0v2 € F and is the multiplicative identity.

Now, let a + b2 € F — {0}.

Then a and b are not simultaneously 0 .

1 a-bV2
a+bvZ = a2-2p2°

We claim that a? — 2b% # 0.
Case (i)a # 0 and b = 0, then a? — 2b? = a? # 0.
Case (ii) a = 0 and b # 0, then a? — 2b? = —2b% # 0.

Also

Case (iii) a # 0 and b # 0. Suppose a® — 2b? = 0.
Then a? = 2b? so that a®/b? = 2.
Hence a/b = +v/2.
Now, a/b € Q and V2 & Q. This is a contradiction.
Hence a? — 2b% # 0.

1 a b
et bvZ (a2 - 2b2) B (az — ZbZ)\/EE F
and is the inverse of a + bv/2.
Hence F is a field.

Problem 2. Give examples of

a finite commutative ring with identity which is not an integral domain.
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a finite non-commutative ring.

an infinite non-commutative ring with identity.

an infinite ring having no identity.

Solution.

A =(Z4, B, ©) is a finite commutative ring with identity 1.

We have 2 O 2 =0. Thus 2 is a zero-divisor in A and hence A is not an integral domain.

Consider the set M,(Z3) of all matrices with entries from \mathbf{Z} 3. Clearly M,(Z3) is
finite

and is also a ring under matrix addition and multiplication.

Further ((1) g) (; i) = (1 g) and (; i) ((1) g) = (; %) and
hence M5(Z3) is non-commutative.

M>(R) is an infinite non-commutative ring with identity ((1) (1))

(2Z, +, .) is an infinite ring with no identity.

Problem 3. Prove that the only idempotent elements of an integral domain are 0 and 1.
Solution. Let R be an integral domain. Let a€ R be an idempotent element.

Then a® = a so thata>> a=a(a- 1)=0.

Since R has no zero-divisors a(a-1)=0= a=0 or a-1=0

Problem 4. Let F be a finite field with n elements. Prove that a"=a forall aeF.

Solution. If a =0, then obviously a" =a=0. Hence, let a # 0. Since F is a field, F -
{0} is a group under multiplication and |F - {0}| = n - 1 . Hence a™! =1 (by
Theorem 3.35). Therefore a" =a .

Problem 5. Prove that in the case of a ring with identity the axiom a+b=b +a is
redundant.

(i.e., The axiom a+b=Db+a can be derived from the other axioms of the ring.)

Solution. Using the two distributive laws of a ring

(1+1)a+b)=1(a+b)+1(a+b)=a+b+a+b and

(1+D@+b)=1+la+(1+1)b=a+a+tb+b.

Thereforea+b+a+b=a+a+b+b.
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Hence b+a=a+b (by cancellation laws).

Problem 6. If the additive group of a ring R is cyclic. Prove that R is commutative.
Deduce that a ring with 7 elements is commutative.

Solution. (R, +) is a cyclic group. Let R=(a) .Let x,y\inR.Then x=ma and y=
na where m,n € Z.

Now, xy=mana=(a+a+....+a)(a+a+...... +a)

= mna’= nma’ = na ma=yx

Hence R is a commutative ring.

Now, let R be a ring with 7 elements.

Then (R, +) is a group of order 7. |R|=7

Hence (R, +) is cyclic.

Hence R is commutative.

Problem 7. Let R and R' be rings and f: R = R' be an isomorphism. Then
(1) R is commutative = R' is commutative.
(i) R is ring with identity = R' is a ring with identity.
(iii) R is an integral domain R' is an integral domain.
(iv) R isafield = R' is a field.
Solution.
(i) Let a',b'eR'. Since f is onto, there exists a, b'e R such that f(a)=a' and f(b)="b'.
Now,
a'b'= f(a)f(b)=f(ab) (since fis an isomorphism)
= f(ba) (since R is a commutative ring)
= f(b)f(a)
=b'a’
Therefore R' is a commutative ring.
(ii) Let 1'e R be the identity element of R .
Let a"e R'. Then there exists a'e R such that f(a)=a'.
Now, f(1)a'=1f(1)f(a)=1f(la) =f(a)=a".
Similarly a'f(1) =a' and hence f(1) is the identity elementin R'.
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Therefore R' is a ring with identity.

(iii) Let R be an integral domain. Then by (i) and (ii), R' is a commutative ring with
identity.

Now, we prove that R' has no zero-divisors.

Let a',b"eR' andlet a'=0.

Since f is onto there exist a, b'e R such that f(a)=a' and f(b)="b'.

a'b'= 0= f(a)f(b) =0

=f(ab) =0

=ab =0 (since fis 1-1)

= a=0orb =0 (since R is an integral domain)

= f(a) =0 or f(b) = 0.

= a'=0orb' =0.

Therefore R' is an integral domain.

(iv) We need to prove that every non-zero element in R' has an inverse. Let a"e R' and a' #
0.

Then there exists a'e R - {0} such that f(a) = a'

Now, f(a™)a' = f(a")f(a)= f(a™a) = f(1).

Hence f(a™) is the inverse of a'.

Problem 8. Prove that the only isomorphism f :Q—Q is the identity map.

Solution. Since f is an isomorphism f(0) = 0 and f(1) = 1. Now, let n be a positive integer.

f(n) =f(1+ 1 +... + 1) (written n times)
=f(1)+ (1) +.... + f(1) (written n times)
=1+1+....+ 1 (written n times)
=n.

Now, if n is a negative integer, let n = -m where m 'eN.

Then f(n) = f(-m) = -f(m)=-m =n

Thus for any integer n, f(n) = n.

Now, let a'e Q. Then a = p/q where p, q 'e Z.

Hence f(a) = f(p/q) = f(pq™) = f(p)f(q)= Ap)[f(@]" =pq” =p/q=a.

Exercises
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1. Give examples of

(a) a commutative ring with zero. divisors.

(b) a non-commutative ring with zero. divisors.

(c) an integral domain which is not a field.

(d) a skew field which is not a field.

(e) a commutative ring with identity which is not an integral domain.

2. Prove that a ring R is commutative iff for all a, b € R, (a + b)? = a? + 2ab + b>.

4.5. Characteristic of a ring

Let R be aring. Then (R, +) is a group. Foranya € R we havena =a+a+--+a
(written n times).

Note. For the ring Z4 we have 6a = 0 for all a € Z.

Definition. Let R be a ring. If there exists a positive integer n such that na = 0, for all
a € R then the least such positive integer is called the characteristic of the ring R. If no
such positive integer exists then the ring is said to be of characteristic zero.

Examples

1. Zg is aring of characteristic 6 . In general Z,, is a ring of characteristic n.

2. Z is a ring of characteristic zero, since there is no positive integer n such that na = 0
forall a € Z.

3. M, (R) is a ring of characteristic zero.

4. ((S),AN) is a ring of characteristic 2 , since 24 = AAA = @ forall A € p(5).

5. Any Boolean ring is of characteristic 2 (refer solved problem 1 of 4.2).

Theorem 4.14. Let R be a ring with identity 1 . If 1 is an element of finite order in the
group (R, +) then the order of 1 is the characteristic of R. If 1 is of infinite order, the
characteristic of the ring is 0 .

Proof. Suppose the order of 1 is n. Then n is the least positive integer such thatn -1 = 0
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(ie.,) 1+ 1+ -+ 1 (ntimes)= 0. Now,leta € R.
Then,na =a+a+ -+ a(n times )

=l-a+l-a+--+1-a

=(1+1+--+1)a.

=0-a

= 0.
Thus na=0 for all a € R.
Hence the characteristic of the ring is n.
If 1 is of infinite order then there, is no positive integer n such that n - 1 = 0. Hence the
characteristic of the ring is 0 .
Theorem 4.15. The characteristic of an integral domain D is either O or a prime number.
Proof. If the characteristic of D is 0 then there is nothing to prove. If not be the
characteristic of D be n.
If n is not prime, letn = pg where 1 <p <nand1 < q <n.
Since characteristic of D is n we have n.1=0
Hencen-1=pq-1=(p-1)(q-1) =0.
Since D is an integral domain eitherp-1=0o0rqg-1=0.
Since p, q are both less than n, this contradicts the definition of the characteristic of D.
Hence n is a prime number.
Corollary. The characteristic of any field is either 0 or a prime number.
Proof. Since every field is an integral domain the result follows.
Note.
1. The characteristic of an arbitrary ring need not be prime. For example Zg is of
characteristic 6.
2. The converse of the above theorem is not true. (ie.,) If the characteristic of a ring R is
prime then R need not be an integral domain.
Example. The ring ( §(S), A,N ) is of characteristic 2 but it is not an integral domain. If A
and B are two disjoint nonempty subsets of S we have A N B = ® and hence A and B are
zero divisors in £ (S).
Theorem 4.16. In an integral domain D of characteristic p, the order of every element in

the additive group is p.
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Proof. Let a € D be any non-zero element.

Let the order of a be n. Then n is the least positive integer such that na = 0.
Now, by the definition of the characteristic of D we have pa = 0.

Hence n | p. Now, since p is prime,n = 1 orn = p.

If n = 1,na = a = 0 which is a contradiction.

Hence n = p. Thus the order of a is p.

Note. The above result is not true for an arbitrary ring. For example the characteristic of
the ring Z, is 6 whereas the order of 2 € Zg is 3 .

Exercises

1. Prove that any integral domain of characteristic zero is infinite.

2. Show that the characteristic of M,(Z3) is 3 .

3. Give an example of an infinite ring of characteristic not zero.

4. In a field of characteristic p show that (a + b)? = a? + b?.

5. Let a, b be arbitrary elements of a ring a whose characteristic is 2 and let ab = ba
Then show that (a + b)? = a? + b? = (a — b)?.

6. Determine which of the following are true and which are false.

(a) nZ is of characteristic n.

(b) The characteristic of any ring is either 0 or a prime number.

(c) The characteristic of Q is zero.

(d) The characteristic of any finite ring is not zero.

(e) The characteristic of any field is zero.

Answers.

6.@F ®F ()T (d)T (e)F.

4.6. Subrings

Definition. A non-empty subset S of a ring (R, +, .) is called a subring if S itself is a ring
under the same operations as in R.

Examples

1. 2Zis asubring of Z.

2. Zis a subring of Q.

3. Qs asubring of R.

4. Risa subring of C.
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a 0). .
0 0) is a subring of M, (R).
6. {0} and R are subrings of any ring R. They are called the trivial subrings of R.

5. The set of all matrices of the form (

7. S={a+bV2/ab € Q}isasubring of R.

8. {0,2} is a subring of Z,.

Theorem 4.17. A non-empty subset S of a ring R is a subring iffa,b € S = a — b € § and
ab €S.

Proof. Let S be a subring of R. Then (S, +) is a subgroup of (R,+).

Hence,a,b € S=a-beS.

Also since S itself is a ring abe S.

Conversely, let S be a non-empty subset of R such that a, be S= a-be S and abe S.
Then (S, +) is a subgroup of (R, +).

Also S is closed under multiplication.

The associative and distributive laws are consequences oi the corresponding laws in R.

Hence S is a subring.

Solved problems

Problem 1. Let X be any set and let F' be the set of all finite subsets of X. Then F is a
subring of (p(X),A,N).

Solution. Let A, B € F. Then A and B are finite sets. Hence (A — B) U (B — A) = AAB is
a finite set so that AAB € F.

Similarly A N B € F. Thus F is a subring.

Problem 2. Let R be a ring with identity. Then S = (n- 1/n € Z) is a subring of R.
Solution. Leta,b € S. Thena=n-1and b =m -1 for somen,m € Z.
Hencea—b=n-1-m-1=(m—-m)-1€S.
Alsoab=(Mn-1)(m-1)=(mm)-1€S.

Hence S is a subring of R.

Problem 3. Given an example of

(a) a ring without identity in which a subring has an identity.

(b) a subring without identity, of a ring with identity.

(c) a ring with identity 1 in which a subring has identity 1’ # 1.
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(d) a subring of a non-commutative ring which is commutative.

(e) a subring of a field, which is not a field.

Solution. (a) Consider the set R of all matrices of the form (Z 8) where a,b € R. Then
R is a ring under matrix addition and multiplication .

We now prove that this ring does not have an identity.

Let (2 g) be a matrix such that (ccl g) (Z 8) = (Z 8) (2 8) = (Z g)

Now,
(G 0G 0= o
>Ga 0=G o
>ac=aandad =b=c#1landd = ba™ L.

Hence the matrix (fl g) depends on the matrix (Z 8) so that the ring R does not have

an identity element.

However the subring S of R consisting of all matrices of the form (8 8) has ((1) 8) as

identity.
(b) 2 Z is a subring of Z. Z has 1 as the identity but 2 Z doesnot have an identity.

a 0

(c) M, (R) is a ring with the identity ((1) (1)) The subring {( 0 0o

1 0
(o o
(d) Example given in (c).
(e) Qis a field. Z is a subring of Q but Z is not a field.

/a € Ry has the identit
y

Theorem 4.18. The intersection of two subrings of a ring R is a subring of R.
Proof. Let A, B be two subrings of R.

Leta,b € ANB. Thena,b € A and B.

Since A and B are subrings a — b and ab € A and B.

~ a—bandab € ANB.

~ A N B is subring of R (by Theorem 4.17).

Note.

1. The union of the two subrings of a ring need not be a subring.
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2. The union of two subrings of a ring is again a subring iff one is contained in the other
(proof as in theorem 3.20).

Definition. A non-empty subset S of a field ( F, +,- ) is called a subfield if S itself is a field
under the same operations as in F.

Example.

1. Qisasubfield of R

2. Risasubfield of C.

Theorem 4.19. A non-empty subset S of a field F is a subfield iff
(i)a,beS=>a—beSand

(iiya,p€eSandb #0=>ab 1 €S.

The proof follows by applying Theorem 3.17 to the groups ( F,+ ) and ( F — (0),.).
Exercises

1. Prove that every subgroup of (Z_ +)is a subring of the ring of integers. (Hint: Any
subgroup of Z is nZ for some n ).

2. Prove that every subgroup of (Z,,@) is a subring of ( Z,,,, ® ).

3. Find all the subrings of Zg, Z;, and Z ;.

4.7. Ideals

Definition. Let R be a ring. A non-empty subset of R is called a left ideal of R if
(i)a,bel=a—-bel.

(ii)a€landr ER=>ra€l.

I is called a right ideal of R if

()a,bel=>a—-bel

(ii)a€landr ER = ar € 1.

I is called an ideal of R if I is both a left ideal and right ideal.

Thus, in an ideal the product of an element in the ideal and an element in the ring is an
element of the ideal. In a commutative ring the concepts of the left ideal, right ideal and
ideal coincide.

Examples

1. Inanyring, R, {0} and R are ideals. They called improper ideals of R.

2. 2Zis an ideal of Z.

Proof. Leta,b € 2Z. Thena — b € 2Z. Leta € 2Z and b € Z. Then ab is even and hence
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ab€ 2Z. Thus 2Z is an ideal of Z.

In general nZ is an ideal of Z

3. In M,(R) the set S of all matrices of the form (Z g) is a left ideal and it is not a
right ideal.
Clearly ABeES=>A—-BES.

Now, let A € S and B € M, (R).

LetA = (a 0) and B = (p q)

b 0 r s)
Then BA = (¥ Z)(Z 8)=(f§isq£’ g)es.

Hence S is a left ideal. However
4= o) 3)

=(op bg) €S

Hence S is not a right ideal.

4. Let R be any ring. Let a € R.

Let aR = {ax/x € R}. Then aR is a right ideal of R.

Similarly Ra = {xa/x € R} is a left ideal of R.

Let ax,ay € aR.

Then ax —ay = a(x — y) € aR.

Letax € aR and y € R.

Then (ax)y = a(xy) € aR.

Thus aR is a right ideal.

Similarly Ra is a left ideal of R.

Definition. If R is a commutative ring then aR = Ra is an ideal. This is called the
principal ideal generated by a and is denoted by ( a ).

Note. If R is a commutative ring with identity 1 then a = a.1 € (a). This may not be true
if the ring R does not have an identity.

Example. Consider the ring 2 Z . Here (4) = {0,4,8,+16,+24, ...1} and 4 & (4).
Remark.

(i) Every left ideal of a ring R is a subring of R. Let I be a left ideal of R. Let a, b € I.
Then by definition, a — b and ab € I. Hence [ is a subring of R.
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(i) Similarly every right ideal of R is also a subring of R.
(iii) Any ideal of R is a subring of R. (by (i) and (ii))
(iv) However, a subring of R need not be an ideal of R.

Example.
Z is a subring of Q but Z is not an ideal of Q since [ € Z and% € Qbut/ -%z % ¢ Z.

Theorem 4.20. Let R be a ring with identity 1 . If I is an ideal of R and I € I, then [ = R.
Proof. Obviously I € R. Now, letr € R.

Sincel €el,r-1=r€l. ThusR € I.

Hence R = 1.

Theorem 4.21. Let F be any field. Then the only ideals of F are {0} and F.

(ie.,) A field has no proper ideals.

Proof. Let I be an ideal of F. Suppose I # {0}.

We shall prove that I = F. Since I # {0}, there exists an element a € [ such that a # 0.
Since F is a field a has a multiplicative inverse a™! € F.

Now,a€landa ' €F =saal=1€l.

Hence by theorem 4.20, [ = F.

Theorem 4.22. Let R be a commutative ring with identity. Then R is a field iff R has no
proper ideals.

Proof. If R is a field, by theorem 4.21, R has no proper ideals.

Conversely, suppose R has no proper ideals.

To prove that R is a field we need to show that every non-zero element in R has an inverse.
Leta € Randa # 0.

Consider the principal ideal aR.

Since R is a ring with identity,a = a - 1 € aR.

~ aR # {0}. Since R has no proper ideals, aR = R.

Hence there exists x € R such that ax = 1.

Thus x is the inverse of a. Hence R is a field.

Definition. An integral domain R is said to be a principal ideal domain (PID) if every ideal
of R is a principal ideal.

Examples

1. Zis a principal ideal domain since any ideal of Z is of the form nZ.
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2. Any field F is a principal ideal domain since the only ideals of F are (0 )and (1 )=F
(by theorem 4.21).

Exercises

1. Show that intersection of two left ideals of a ring R is again a left ideal of R. Prove
similar results for right ideals and ideals.

2. Letl; and I, be two ideals of R. LetI; + I, = {a + b/a € I;,b € I,}. Show that
I; + I, is an ideal of R.

3. Determine which of the following statements are true and which are false.

(a) A subring of a commutative ring is commutative.

(b) A subring of a ring with identity is again a ring with identity.

(c) The identity element of a subring is the same as the identity element a the ring.
(d) The set of all non-singular 2 X d matrices is a subring of M, (R).

(e) Every subring of a ring R is an ideal of R.

(f) Every ideal of a ring R is a subring dR.

(g) Z is an ideal of R.

(h) Q is an ideal of R.

(1) {0,2} is an ideal of Z,,.

(j) {0,1} is an ideal of Z,.

(k) In a commutative ring every left ideal is a right ideal.

(1) R has no proper ideals.

(m) Q is a principal ideal domain.

(n) Z is a principal ideal domain.

Answers.

3.@T (b F (oF DF @F OT (@F MF OT @OF KT
T (m) T

(n)T.
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4.3. Isomorphism
Definition. Let (R, +,-) and (R', +,-) be two rings. A bijection f: R = R’ is called an
isomorphism if
() f(a+b) = f(a) + f(b) and
(ii) f(ab) = f(a)f(b) forall a,b € R.
If f:R = R’ is an isomorphism, we say that R is isomorphic to R’ and we write R = R'.
Note. Let R and R’ be two rings and f: R = R’ be an isomorphism. Then clearly f is an
isomorphism of the group (R, +) to the group (R’, +).
Hence f(0) = 0" and f(—a) = —f(a).
Examples
1. f:C - Cdefined by f(z) = Z is an isomorphism. For, clearly f is a bijection.
Also
fai+z)=2.+2,=2,+7%,

= f(z1) + f(z;), and

f(z122)= 7125 = 712, = f(21)f (22).

2. Let C be the ring of complex numbers. Let S be the set of all matrices of the form

(_Z 2) where a, b € R. Then S is a ring under matrix addition and matrix

multiplication. Refer example 14 in 4.1. Now the mapping f: C — S defined by f(a +

ib) = (_Z Z) is an isomorphism.

Clearly f is a bijection. Now letx = a+ibandy = c + id.

Similarly, f(xy) = f(x)f (¥).
3. The groups (Z, +) and (2Z, +) are isomorphic under the map f:Z — 2Z, given by

f(x) = 2x.

However f is not an isomorphism of the ring (Z, +) to (2Z, +,-) since f(xy) = 2xy and
fOf(y) = 2x2y = 4xy so that f (xy) # f(x)f (¥).

In fact there is no isomorphism between the rings (Z, +,-) and (2Z, +,-) (verify).

Exercises
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1. In2Z wedefineax*b = %ab. Show that (2Z;+,*) is a ring isomorphic to (Z, +,).
2. Let S be the set of all matrices of the form (g 8) where a € R. Show that f:R — s

given by f(a) = (g 8) is an isomorphism.

3. Verify whether f: R — R given by f(x) = —x is an isomorphism.

4.8. Quotient rings

Let R be aring. Let (I, +) be a subgroup of (R, +).

Since addition is commutative in R, I is a normal subgroup of (R, + ).

R/I = {I + a/a € R} is a group under the operation defined by
I+a)+{+b)=1+ (a+D).

To make R/I aring, define a multiplication in R/Iby (I +a)(I + b) =1+ ab.

But we have to prove that this multiplication is well defined (ie.,) it is independent of the
choice of the representatives from the casets. We shall prove that this happens iff I is an
ideal.

Theorem 4.23. Let R be aring and I be a subgroup of ( R, + ). The multiplication in R /I
given by

(I + a)(I + b) =1 + ab is well defined iff [ is an ideal of R.

Proof. Let I be an ideal of R.

To prove multiplication is well defined,

letl+a,=I+aandl+b;,=1+b.

Thena, €l +aand b; €1+ b.

a; =iy +aand b; =i, + b where iy, i, € I.

Hence ab; = (i + a)(i, + b) = iyi, + i;b + ai, + ab.

Now since I is an ideal we have i,i,,i1b,ai, € I.

Hence a,b; = i3 + ab where i3 = iyi, +i1b +ai, €.~ a;b; € + ab.

Hencel +ab =1+ a,b;.

Conversely suppose that the multiplication in R/I given by (I + a)(I + b) =1+ ab is
well defined.

To prove that [ is an ideal of R.
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Leti € I andr* € R. We have to prove that ir,ri € I.

Now, [ +ir=(+){+r)=U+0)({+7r)=1+0r =1

~ ir € I. Similarly, ri € I.

Hence I is an ideal.

Definition. Let R be any ring and I be an ideal of R. We have two well defined binary
operations in R/I given by

I+a)+U+b)=1+(a+b)and

(I+a)(I+Db)=1+ab.

It is easy to verify that R/I is a ring under these operations.

The ring R /I is called the quotient ring of R modulo I.
Examples

1. The subset I = {0,3} of Zg is an ideal

Ze/l ={I,1 + 1,1 + 2} is a ring isomorphic to Z3.

Here Zg is not an integral domain but the quotient ring Z// is an integral domain.
2. The subset pZ where p is prime is an ideal of the ring Z.

Z/vZ = (pZ,pZ+1 ... .. ,pZ + (p — 1)). It is easy to see that the ring Z/pZ = Z,,. Here Z
is an integral demain but not a field whereas Z/pZ is a field.
Exercises

1. Determine which of the following statements are true and which are false.
Let R be aring and [ an ideal of R. Then,
(a) R is commutative = R /I is commutative.
(b) R/I is commutative = R is commutative.
(c) R is a ring with identity = R/I is a ring with identity.
(d) R/I is a ring with identity = R is a ring with identity.
(e) R is an integral domain = R/I is an integral domain.
(f) R/I is an integral domain = R is an integral domain.
(g) R is afield > R/I is a field.
(h) R/I is a field = R is a field.
Answers.

L@T O®F T QF @F OF @F (MF
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4.9. Maximal and prime ideals
Definition. Let R be a ring. An ideal M # R is said to be a maximal ideal of R if whenever
U is an ideal of R such that M € U € R then either U = M or U = R.
That is, there is no proper ideal of R properly containing M. M CUC R=>U=M
Examples
1. (2)is amaximal ideal in Z. For, let U be an ideal properly containing (2).
~ U contains an odd integer say, 2n + 1.
~1=02n+1)-2nev.
~ U = Z (by theorem 4.20).
Thus there is no proper ideal of Z properly containing (2). Hence (2) is a maximal ideal of
Z.
2. Let p be any prime. Then ( p ) is maximal ideal in Z.
Let U be any ideal of Z such that (p) € U. Since every ideal of Z is a principal ideal
U = (n) for some n € Z.
Now,pe (p) S U=peU=(n).
~ p = nm for some integer m.
Since p is prime eithern = 1 orn = p.
Suppose n = 1. Then U = Z.
Suppose n = p. Then U = (p).
= There is no proper ideal of Z properly containing ( p ). Hence ( p ) is a maximal ideal in
Z

3. (4) is not a maximal ideal in Z. For, (2) is proper ideal of Z properly containing (4).

Theorem 4.24. Let R be a commutative ring identity. An ideal M of R is maximal iff
R/M;; field.

Proof. Let M be a maximal ideal in R.

Since R is a commutative ring with identity and M # R, R/M is also a commutative ring
with identity.

Now, let M + a be a non-zero element in R/M such that a € M. We shall now prove that

M + a has multiplicative inverse in R /M.
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LetU ={ra+m/r € R and m € M}.
We claim that U in an ideal of R.
(na+my) —(a+my) =0y —1)a+(my—my) €U
Also, r(ra + my) = (rry)a + rmy € U (since rm, € M).
~ U is an ideal of R.
Now, letm € M. Thenm =0a+m e U.
L~ McU.
Alsoa=1a+0€Uanda & M.
~M=+U.
~ U is an ideal of R properly containing M.
But M is a maximal ideal of R.
& U=R.Hencel €U.
~ 1= ba+ m forsome b € R.
Now, M+1=M-+ba+m=M+ba (since meM)
= (M+b)(M+a)
Hence M + b is the inverse of M + a.
Thus every non-zero element of R/M h inverse.
Hence R/M is a field.
Conversely, suppose R/M is a field.
Let U be any ideal of R properly containing M.
=~ There exists an element a € U such thata & M.
~ M + a is a non-zero element of R/M.
Since R/M is a field M + a has an inverse, say M + b.
~M+a)M+b)=M+1.
“ M+4+ab=M+1.
~1—ab€eM.
ButM € U.Hencel —ab € U.
Alsoa € U > ab € U.
~1=0—-ab)+ab.€e U.Thus1€U.
=~ U = R. Thus there is no proper ideal of R properly containing M. Hence M is a maximal

ideal in R.
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Definition. Let R be a commutative ring. An ideal P # R is called a prime ideal if
ab € P = eithera € Porb € P.

Examples

1. Let R be an integral domain. Then ( 0 ) is a prime ideal of R.

For,ab € (0) > ab =0

=>a=0orb=0(since Risan .D.)
= a € (0) or b € (0).

2. (3)is a prime ideal of Z.
For, ab € (3) = ab = 3n for some integer n.

=>3|ab
=>3]laor3|b
=>a€(3)orb e (3).

~ (3) is a prime ideal.
Note. In fact for any prime number p, the ideal ( p ) is a prime ideal in Z.

(4) is not a prime ideal in Z since 2 X 2 € (4). But 2 & (4).

Theorem 4.25. Let R be any commutative ring with identity. Let P be an ideal of R. Then
P is a prime ideal & R/P is an integral domain.

Proof. Let P be a prime ideal.

Since R is a commutative ring with identity R/P is also commutative ring with identity.
Now, (P+a)(P+b)=P+0

>P+ab=P

=>ab€eP

= a € P or b € P(since P is a prime ideal )

=>P+a=PorP+b=P

Thus R /P has no zero divisors.

~ R/P is integral domain.

Conversely, suppose R/P is an integral domain.

We claim that P is a prime ideal of R.

Letab € P. Then P + ab = P.

~ (P+a)(P+b)=P.

&~ P+a=PorP+b =P.(since R/P has no zero-divisors)
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~a€Porb€P.

~ P is a prime ideal of R.

Corollary. Let R be a commutative ring with identity. Then every maximal ideal of R is a
prime ideal of R.

Proof. Let M be a maximal ideal of R.

~ R/M is a field. (by theorem 4.24)

~ R/M is an integral domain. (by theorem 4.8)

~ M is a prime ideal. (by theorem 4.25)

Note. The converse of the above statement is not true. For example, ( 0 ) is a prime ideal
of Z but not a maximal ideal of Z.

Exercises

1. Prove that in Z, (6) is not a maximal ideal.

2. Prove that for any composite number n, the ideal ( n ) is not a maximal ideal of Z.

3. Prove that (n ) is a maximal ideal in Z iff n is a prime number.

4. Prove that (4) is a maximal ideal but not a prime ideal in the ring of even integers.

5. Find all prime ideals and maximal ideals of Z,.

6. Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a
maximal ideal of R.

Answers.

5.(2) and (3) are prime ideals and also maximal ideals.

4.10. Homomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is called a homomorphism if
() f(a+b) = f(a) + f(b) and

(i1) f(ab) = f(a)f(b) forall a,b € R.

If fis 1 — 1, then f is called a monomorphism. If f is onto, then f is called an
epimorphism. A homomorphism of a ring onto itself is called an endomorphism.

Note.

1. Obviously an isomorphism of a ring is a homomorphism and a 1 — 1, onto
homomorphism is an isomorphism.

2. Condition (i) of ring homomorphism says that f is a group homomorphism from the

additive group ( R, + ) to the additive group ( R', + ).
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Examples
. f:R — R’ defined by f(a) = 0 for all a € R is obviously a homorphism. f is called
the trivial homomorphism.
2. Let R be any ring. The identity map i: R — R is obviously a homomorphism.
3. LetR beanyring. f:R X R = R given by f(x,y) = x is a ring homomorphism.
For,
fl(a,b) + (c,d)]=f(a+c,b+d)=a+c
= f(a,b) + f(c,d)
Also, f[(a,b)(c,d)] = f(ac,bd) = ac = f(a,b)f(c,d)
4. f:Z - Z, defined by f(x) = r where x = gn 4+ r,0 < r < n is a homomorphism.
For, leta,b € Z.
Leta=qn+r, where0<nr, <n,b=qyn+r, where 0 <r, <n,
r+1r,=qsn+r3;where 0 <r; <n,andnryr, = qun + 1, where 0 <7, < n.
Now,
(@+b)=(q+qIn+mr+n
=(q1+ g2+ qz3)n+r13.
~fla+b)=rs=r@r=/[f(a)® f(D).
Also,

ab= (q.n +11)(qzn + 13)

=n(q1qz2n + 11q2 + 12q1) + 117y
=n(q1q2n + 111Gz + 12q1 + qu) + 14
~flab) =1, =1 Onr, = f(a) © f(b)
Hence f is a homomorphism.
5. LetR be aring and I be an ideal of R. Then ®: R — R/I defined by ®(x) =1 + x is
ring homomorphism. & is called the natural homomorphism.
Px+y)=I1+(x+y)
={U+x)+U+Yy)
= O(x) + D(y).
d(xy)=1+xy
= +x){+y)
= dX)P¥).

Hence @ is a ring homomorphism.
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Theorem 4.26. Let R and R’ be rings and f: R — R’ tee a homomorphism. Then,

(@) £(0) = 0

(ii) f(—a) = —f(a) forall a € R.

(iii) If S is a subring of R, then f(S) is a subring of R’. In particular f(R) is a subring of
R'.

(iv) If S is an ideal of R, then f(S) is an ideal of f(R).

(v) If S” is a subring of R, then f~1(S’) is a subring of R.

(vi) If S" is an ideal of f(R), then f~1(S") is an ideal of R.

(vii) If R is a ring with identity 1 and f(1) # 0’, then f(1) = 1’ is the identity of f (R).
(viii) If R is a commutative ring then f(R) is also commutative.

Proof. Since f is a homomorphism of the group (R, +) to (R', +), the results (i) and (ii)
follow from Theorem 3.55

(ii1) Since S is a subring of R, (S, +) is a subgroup of (R, + ).

Hence f(S) is a subgroup of (R, + ).

Now, leta’, b’ € f(S).

Then a’ = f(a) and b’ = f(b) for some a,b € S.

- a'b’' = f(@)f(b) = f(ab) € f(S).

Hence f(S) is a subring of R’.

(iv) Let S be an ideal of R.

To prove that £(S) is an ideal of f(R) it is enough if we prove that ' € f(R) and

a' €f(S)=>r'a’ anda’r’ € f(S).

Letr' = f(r)anda’ = f(a) wherer € Rand a € S.

Now, since S is an ideal of R, ra and ar € S.

Hence f(ra) = f(r)f(a) =r'a’ € f(S).

Similarly a'r" € f(S5).

Hence f(S) is an ideal of f(R).

(v) Let S’ be a subring of R’. Since (S’,+) is a subgroup of (R’, +), f~1(S’) is a subgroup
of (R, +).

Now, leta, b € f~1(S").

Then f(a), f(b) € S'.

~ f(ab) = f(a)f(b) € S’ (since S’ is a subring of R ).
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. ab € f71(S").
Hence f~1(S’) is a subring of R.
(vi) Proof is similar to that of (v).
(vii) Let R be a ring with identity 1. Let a’ € f(R).
Then a’ = f(a) for some a € R.
Now, a’f(1) = f(@)f(1) = f(al) = f(a) = a'.
Similarly, f(1)a’ = a'. Also f(1) # 0.
Hence f(1) is the identity of f(R).
(viii) Proof is left to the reader.
Definition. The kernel K of a homomorphism f of a ring R to aring R’ is defined by
{a/a € R and f(a) = 0}.
Theorem 4.27. Let f: R = R’ be a homomorphism. Let K be the kernel of f. Then K is an
ideal of R.
Proof. By definition, K = f~1((0)).
Since {0} as an ideal of f(R), by (vi) of theorem 4.26, K is an ideal of R.
Theorem 4.28. (The fundamental theorem of homomorphism)
Let R and R’ be rings and f: R = R’ be an epimorphism. Let K be the kernel of f. Then
R/K = R'.
Proof. Define ®: R/K — R' by ®(K + a) = f(a).
(i) To prove @ is well defined,
LetK+b=K+a.Thenb € K + a.
s~ b=k+awherek € K.

~f)=flk+a)=f(k)+f(a)
=0+f(a) = f(a)
~ (K +b)=f(b)=f(a) =K+ a)
(i1) To prove @ is 1-1
¢(K +a) =K +b) = f(a)=f(b)

=f(@)—fb)=0
=f(@)+f(-b)=0
= f(a—b)=0
>a—beEK
>a€K+b
>K+a=K+b
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(iv) To prove @ is onto

Let ¢’ € R'. Since f is omo, there exists a € R such that f(a) = a’. Hence ¢ (K + a) =
f(a) =a'.

(iv) To prove @ is homomorphism

®[(K + a) + (K + B]= ®[K + (a + b)]
= f(a +b)
= f(a) + f(b) (since fis homomorphism)

=®(K +a) + (K + b).
and ®[(K + a)(K + b)] = ®(K + ab)= f(ab)=f(a) f(b)=P(K+ a)P(K + b)
Hence @ is an isomorphism.
Hence% =R’
Solved Problems
Problem 1. The homomorphic image of an integral domain need not be an integral
domain.
Solution.f:Z — Z defined by f(a) = r where a = 4q + 1,0 < r < 4 is a homomorphism
of Z, onto Z,. Here Z is an integral domain and Z, is not me instral damain since 2

©2=0

Problem 2. Any homomorphism of a field to itself is either one-one or maps every element
to 0 Solution. Let F be a field and f: F — F be a by-omophism. Let K be the kernel of f.
Then K is an ideal of F. By theorem 4.21, K = {0} or K = F.

If K =[0] then fis1—1.

If K = F.then f(a) =0 foralla € F.

Exercises

1. IfR,R',R" arerings andif f:R = R' and g: R' = R"' are homomorphisms, then

geo f:R — R" is a homomorphism.

2. LetR,R'berings and f: R = R’ be a epimorphism. Then if R is a skew field, so is R’.

3. Determine which of the following are homomorphisms. If so find the kernel.
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(a) f:C > Cdefined by f(z) =2

(b) f:Z - Z defined by f(a) = 2a.

(c) Let R = (m + nv/2/m, n € Z).R is a ring under usual addition and multiplication.
Define f: R — R by f(m + nv2) = m — nv2.

() f:€ — My(R) defined by f(a + ib) = (_¢ 2)

(e) f:Z - Z,, f as defined in example 4 of section 4.10.

(f) f:Z > Z defined by f(x) = x? + 3

4. Determine which of the following are true and which are false.

(a) Every homomorphism is an isomorphism.

(b) Every isomorphism is a homomorphism.

(¢) A homomorphism is 1-1 iff its kernel is {0}.

(d) In a ring homomorphism, identity element is mapped into identity.
(e) A homomorphic image of an integral domain is an integral domain.
(f) A homomorphic image of a skewfield is a skewfield.

(g) Homomorphic image of a field is a field.

(h) If f:R — R’ is a homomorphism and R is commutative then R’ is commutative.

Answers.
3. (a) Kerf = {0} (b) Not a homomorphism
(c) Kerf = (0) (d) Kerf = {0}
(e) Kerf =nZ (f) Not a homomorphism.
4.(a)F T @©T @F ()F (OF (gF ((HhF.

4.11. Field of quotients of an integral domain

The construction of the quotient field of an integral domain :

Every element of Q can be expressed as a quotient p/q where p,q € Z and q # 0. Further
the two fractions 2/3 and 4/6 represent the same rational number.

In general, two fractions a/b and c/d. where b, d # 0 represent the same rational number
iff ad = bc. Also (a/b) + (c¢/d) = (ad + bc)/bd and (a/b)(c/d) = ac/bd. The

elements of Z can be thought of as fractions of the form a/1.
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The construction of the field of quotients F of an integral domain D is carried out in the
following four stages

(1) Specify the elements of F.

(i1) Define addition and multiplication in F.

(ii1) Show that F is a field under these operations.

(iv) D can be embedded in F.

Stage (i) Let D be an integral domain.

LetS ={(a,b)/a,b € D and b # 0}.

The ordered pair (a, b)can be represent as a formal quotient a/b.

For example, if D = Z, the pair (1,2) will eventually represent the fraction 1/2.
Definition. Two elements (a, b) and (c,d) € S are defined to be equivalent iff ad = bc. If
(a, b) is equivalent to (¢, d) we write (a,b) ~ (¢, d).

Lemma 1. ~ is an equivalence relation in S.

Proof. Let (a,b) € S.

(a,b) ~ (a,b) since ab = ba = ab.

Hence ~ is reflexive.

Now, (a,b) ~ (c,d) = ad = bc = cb =da = (c,d) ~ (a, b).

Hence ~ is symmetric.

Now, let (a,b) ~ (c,d) and (c,d) ~ (e, ).

Now to prove that (a, b) ~ (e, f) we must prove that af = be.

Case (i) Let c = 0. Now, ad = bc and cf = de.

~ ad = 0and de = 0.

Butd # 0. Hencea = 0 and e = 0.

~ af =be =0.

Case(ii) Let c # 0.

We have ad = bc and cf = de.

~ adcf = bcde.

~ af = be (by cancellation law)

~ ~ 1s transitive.

Hence ~ is an equivalence relation on S.

Consider the equivalence class containing ( @, b ). Let it be denoted by %.
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Stage (ii) Let %,2 EF.

a c ad+bc a
Define — + = = and —-
b d bd b

c
d bd

Since D is an integral domain and b, d # 0, we have bd # 0.

Lemma 2. Addition and multiplication defined above are well defined.
Proof. Let (a,,b,) € %and (c1,dy) € g.

a.b = b;aand c;d = d4c............. (D)
a;bdd, = biadd, and c;dbb; = d cbb,
(aqdy + bycy)bd = (ad + bc)b,d,

ad +bc _ a;dy + bicy.

bd = byd,
a,t_ . a
b d b, d,

-~ Addition is well defined.
Also from (1), aybc;d = bjad;c.

~ (ac,bd) ~ (a,cq, b1dy).
ac _a ¢

O Ea—b_ld_l

-~ Multiplication is well defined.

Lemma 3. Stage (iii) F is a field with the addition and multiplication defined above.

Proof. It can easily be verified that addition is commutative and associative.

0. -a . .. .
s the zero of F and Ta is the additive inverse of %.

~ (F,+) is an abelian group.

Clearly multiplication is commutative and associative. % is the identity of F.

If % is a non-zero element of F, then a # 0.

b . )
.= € F and is the inverse of %.
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iz 75 )
_acf +ade
~ bdf
_ acfb + adeb

bdfb
ac ae

_aC ae

~ Fisa field.
Gtage The field F contains a subring R which is isomorphic to D.

Lemma 4. The map f: D — F given by f(a) = % is an isomorphism of D onto f(D).

Proof. Leta,b € D.

a+b

Then f(a + b) =T=%+§=f(a)+f(b) and

b

flab) =% =22 = f(a)f (b).

11

To prove fis 1-1.

a b
f@=f®)=7=7
= (a,1) ~ (b, 1)
=>al=1b
= a=h.

~ f is an isomorphism.

Thus we have proved the following.

Theorem 4.29. Any integral domain D can be embeded in a field F and every element of
F can be espersed as a quotient of two elements of D.

Definition. The field F which we have constructed above is called the field of quotients of
D.

Theorem 4.30. The field of quotients F of an integral domsin D is the smallest field
containing D.

(ie.,) If F is any other field containing D then F' contains a subfield isomorphic to F.
Proof. Leta,b € D and b # 0.

Then a,b € F' and since F' is a field ab™! € F'. Now, let F be the quotient field of D.
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We define f:F — F' by f (5) = ab™".
f is well defined; for, let (a4, b;) ~ (a, b).
Then a;b = bya. Hence a;b;* = ab™?,

To prove fis 1-1

F(3)=f(5)=ab =cd > ad=bc=a/b=c/d

Now, leta/b,c/d € F.

Then f |(5) + (£)] = Fl(ad + be)/bd] = (ad + be)(bd)~* = (ad + be)d b~
=ab '+ cd™t = f(a/b) + f(c/d)
Also, f[(a/b)(c/d)] = f[(ac)/(bd)] = (ac)(bd)™* = acd'b~' = ab~! - cd~*
= f(a/b)f(c/d)

Thus F is isomorphically embedded in F'.

Solved problems

Problem 1. Describe the quotient field of the integral domain D = {a + bv2/a, b € Z}.
Solution. The set of real numbers R is a field containing the given integral domain D.
Hence by theorem 4.30, R contains a subfield isomorphic to the field of quotiens of D.
This subfield is precisely the set of all real numbers of the form (a + bv2)/(c + d+/2)
where ¢ + dv2 # 0.

(a + bV2)/(c + dv2) is of the form p + g2 where p and q are rational numbers.
Thus the quotient field of D is {p + qv2/p.q € Q}.

Problem 2. If D and D’ are isomorphic integral domains then their quotient fields are also
isomorphic.

Solution. Let f: D — D’ be an isomorphism. Let F and F' be the quotient fields of D and
D' respectively. Consider ®@: F — F' given by ®(a/b) = f(a)/f (b). ® is an isomorphism
of F onto F’

Exercises

1. Show that the field of quotients of any field is itself.
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2. Let R be a ring which may or may not have a unit element. In Z X R we define
(n,r)+(m,s) = (m+m,r+s)and (n,r)(m,s) = (nm, mr + ns + rs) [Notice that
since m and n are integers mr and ns are meaningful]. Prove that S is a ring with identity
and R can be embedded in S. [This shows that any ring can be embedded in a ring with
identity].

3. Determine which of the following statements are true and which are false.

(a) R is a field of quotients of R.

(b) Q is a field of quotients of Z.

(c) Ris a field of quotients of Z.

(d) If D is any field then the field of quotients of D is isomorphic to D.

Answers.

3.() T (b) T (c)F @dT.
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